

U.S. Endowment for Forestry & Communities, Inc.

Oregon Army National Guard: Biomass Energy Case Study

Grant 2012-002: Next Steps in Scaling-up Woody Biomass Energy: Learning & Priorities March 25, 2013

Table of Contents

Acknowledgements
Introduction1
The Oregon National Guard Biomass Project1
Pellet Systems and Fuel2
Project Economics
Facility Background
Project Aggregation and Clustered Facility Efficiencies
Lessons Learned12
Conclusion12
Appendix A: Financial Analysis Graphs14
Appendix B: Project Summary Tables16
Appendix C: Combined Projects Life-Cycle Cost Analysis18
Appendix D: COUTES Life-Cycle Cost Analysis22
Appendix E: Biak Training Center Life-Cycle Cost Analysis25
Appendix F: Umatilla Sim Center Building #30 Life-Cycle Cost Analysis
Appendix G: Umatilla Dining Hall Building #36 Life-Cycle Cost Analysis
Appendix H: Umatilla Barracks Building #53 Life-Cycle Cost Analysis
Appendix I: Youth Challenge Facility Life-Cycle Cost Analysis
Appendix J: Burns Armory Life-Cycle Cost Analysis40

Acknowledgements

Dovetail Partners thanks the USDA Forest Service and the U.S. Endowment for Forestry & Communities for providing the funding through the Wood-to-Energy Joint Venture Fund that allowed us to complete this case study. We would also like to give a special thanks to Craig Volz, Resource Efficiency Manager of Tetra Tech, for providing the valuable information that was used to develop this case study.

Introduction

This case study highlights seven Oregon Army National Guard biomass energy projects that are in the process of being designed and installed. These projects provide valuable lessons learned and best practices related to project aggregation from a design-to-implementation perspective. This case study describes the benefits (economies of scale, efficiencies, etc.) and drawbacks of carrying out multiple geographically clustered biomass projects under the same financial bundle. It highlights factors associated with successful biomass energy projects as well as best practices that can be translated into applications in other locations.

The Oregon National Guard Biomass Project

The Oregon Army National Guard (ORARNG) is designing seven wood pellet biomass energy systems that will be installed and operational by 2013 at seven National Guard facilities located across central Oregon. The National Guard's project illustrates a large-scale, aggregated approach to biomass conversion as all seven systems are being installed concurrently.

Craig Volz, Resource Efficiency Manager of Tetra Tech, is facilitating the development of the current phase of the ORARNG's biomass energy project. Volz believes the project is a good opportunity for both the National Guard and Forest Service to achieve multiple goals. "There is a nexus between forest health, biomass fuel sources, and also local economics and job creation through having a locally provided fuel source," he said. Converting to biomass presents an opportunity to create a synergy between the National Guard's objectives related to energy security, renewable energy, energy efficiency, and fuel cost savings and the Forest Service's goals in regard to forest health, hazardous fuels reduction, and local economic development. Additionally, as a renewable and locally available fuel source, biomass helps the ORARNG improve its energy security.

The following seven National Guard buildings are involved in this initiative:

- Youth Challenge Facility
- Central Oregon Unit Training and Equipment Site
- Biak Training Center
- Burns Armory
- Umatilla Training Center, Building #30, Simulation Center
- Umatilla Training Center, Building #36, Dining Hall
- Umatilla Training Center, Building #53, Barracks

Pellet Systems and Fuel

LOCATION / BUILDING	Bend YOUTH CHALLENGE FACILITY	Redmond COUTES	Powell Butte BIAK TRAINING CENTER	Burns ARMORY	Umatilla BLDG # 30 SIM CENTER	Umatilla BLDG # 36 DINING HALL	Umatilla BLDG # 53 BARRACKS
Manufacturer (basis of design)	Köb	Köb	Köb	Köb	Köb	Köb	Köb
Model	Pyrot	Pyrot	Pyrot	Pyrot	Pyrot	Pyrot	Pyrot
Output kW	540	300	220	220	300	540	220
Output MMBtu/hr	1.84	1.02	0.75	0.75	1.02	1.84	0.75
Efficiency LHV	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%
Efficiency HHV	92.0%	92.0%	92.0%	92.0%	92.0%	92.0%	92.0%
Components		Containerized	Containerized		Containerized	Containerized	Containerized
	Storage tank	Storage tank	Storage tank	Storage tank	Storage tank	Storage tank	Storage tank
	Pellet silo	Pellet silo	Pellet silo	Pellet silo	Pellet silo	Pellet silo	Pellet silo
	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger
	Boiler controls	Boiler controls	Boiler controls	Boiler controls	Boiler controls	Boiler controls	Boiler controls
	Auto ignition	Auto ignition	Auto ignition	Auto ignition	Auto ignition	Auto ignition	Auto ignition
	Ash extraction	Ash extraction	Ash extraction	Ash extraction	Ash extraction	Ash extraction	Ash extraction
	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning
Biomass Percent of Building Heating & DHW	100%	100%	100%	100%	100%	100%	100%
Backup Unit	Propane	Propane	Propane	Propane	Propane	Propane	Propane

Table 1. Estimated Equipment Specifications for the ORARNG Biomass Systems

To determine where the biggest energy cost savings could be achieved, Tetra Tech examined the National Guard's sites scattered throughout the state. Biomass fuel turned out to be the most cost effective energy solution for seven of the ORARNG's buildings because they are all dependent on costly propane (with costs at the time of this study at about \$20.00/MMBtu) and do not have access to natural gas. Additionally, biomass helps meet the ORARNG's Net Zero Energy Goal renewable energy requirement. The Guard was selected as one of eight US Army Pilot Net Zero Energy Installations given the charge to reduce their energy use by sixty-five percent from a 2003 baseline and achieve the remaining thirty-five percent offset by using renewables.

The existing propane systems in the seven buildings will be replaced with pellet boilers, with a goal of providing one hundred percent of the heat load for the facilities. Tetra Tech outlined a number of reasons why going with pellet systems is the best strategy. The National Guard needs

a very automated and reliable system because it operates and maintains a large number of facilities across Oregon and because the state budget and the Guard's maintenance staff are spread thin. Consequently, it would not be economical to install wood chip systems at the seven National Guard facilities because of the small scale of the conversions and because wood chip systems are much more hands-on from an operations standpoint (more material handling and higher operation and maintenance costs) than pellet systems.

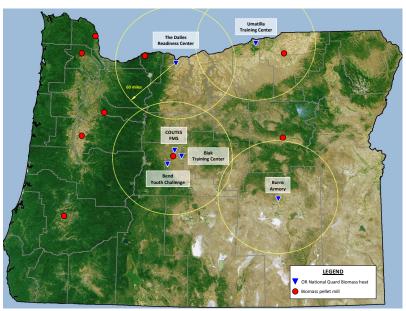


Figure 1. Map of Oregon National Guard Biomass Facilities and Pellet Mills (Tetra Tech)

While there are a number of local biomass boiler manufacturers based in Oregon, the Guard is looking at a Kob/Viessmamn unit that is manufactured in Europe as an initial design. Tetra Tech believes that there are a number of advantages in using imported European biomass boilers versus relying on biomass boilers that are currently manufactured in the U.S. The Kob/Viessmamn unit they are considering is very automated in terms of ash extraction and tube cleaning, representing a clear advantage from an operational and maintenance standpoint (key advantages in terms of the ORARNG's needs). "The Europeans have been designing and manufacturing biomass systems for decades and you can really see it," said Volz. "In the U.S., manufacturers are smaller . . . and they are more fabricators. While their systems can be robust and heavy duty, they just aren't as sophisticated."

Tetra Tech also recommends consideration of a containerized design (where the boiler is housed in a shipping container outside of the facility rather than stored in a boiler room), which could be beneficial in certain installations. Some of the National Guard's buildings do not have a lot of extra indoor space, and a containerized design would also allow them to easily renovate buildings and relocate the boilers where needed.

LOCATION / BUILDING	Bend YOUTH CHALLENGE FACILITY	Redmond COUTES	Powell Butte BIAK TRAINING CENTER	Burns ARMORY	Umatilla BLDG # 30 SIM CENTER	Umatilla BLDG # 36 DINING HALL	Umatilla BLDG # 53 BARRACKS
Composition	Ponderosa Pine wood pellets	Ponderosa Pine wood pellets	Ponderosa Pine wood pellets	Ponderosa Pine wood pellets	Ponderosa Pine wood pellets	Ponderosa Pine wood pellets	Ponderosa Pine wood pellets
Source	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction
Supply Radius	154	135	129	73	155	155	155
Delivery Frequency Per Year	4	2	0	1	2	4	0
Quantity Delivered (tons)	28	28	28	28	28	28	28
Cost Per Ton (BDT) Delivered	\$ 160	\$ 160	\$ 160	\$ 160	\$ 160	\$ 160	\$ 160
Moisture Content	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%
Fuel Storage Capacity (tons)	50	50	35	35	50	50	35
Annual Consumption (tons)	90	38	24	25	43	85	20
Annual Biomass Fuel Cost	\$ 14,400	\$ 6,080	\$ 3,840	\$ 4,000	\$ 6,880	\$ 13,600	\$ 3,200

Table 2. Estimated Fuel Specifications

There are six or seven local pellet fuel manufacturers and distributors clustered in a relatively tight geographical area near the ORARNG sites. To insulate against supply interruptions, the ORARNG intends to maintain two sources of pellet fuel. This diverse fuel supply should help the Guard meet its objective in achieving greater energy security versus remaining dependent on imported propane. "Because woody biomass is plentiful throughout the state, pellets are a good strategy to replace our fossil fuel thermal loads with a renewable source," Volz said.

The Guard expects to pay around \$160.00 per ton of pellets, and in total the facilities will consume about 325 tons of pellets annually, representing an annual biomass fuel cost of approximately \$52,000 between all of the facilities.

Project Economics

LOCATION / BUILDING	FACILITY COUTES CENTER ARMORY			Umatilla BLDG # 30 SIM CENTER	Umatilla BLDG # 36 DINING HALL	Umatilla BLDG # 53 BARRACKS		
PROJECT FUNDING								
2012 Hazardous Fuels Woody Biomass Utilization Grant (design)	\$ 71,863	\$ 36,419	\$ 33,014	\$ 30,097	\$ 25,118	\$ 30,810	\$ 22,679	
State Funds	\$ 99,369	\$ 13,641	\$ 12,366	\$ 100,456	\$ 9,408	\$ 11,540	\$ 8,494	
Federal Funds	\$ 298,106	\$ 275,466	\$ 207,253	\$ 100,456	\$ 265,607	\$ 374,907	\$ 144,515	
OR Dept Energy Commercial Thermal Incentive	\$ 281,293	\$ 188,124	\$ 148,467	\$ 135,711	\$ 169,727	\$ 235,962	\$ 99,352	
Total project funding	\$ 750,630	\$ 513,650	\$ 401,100	\$ 366,720	\$ 469,860	\$ 653,220	\$ 275,040	
PROJECT COSTS								
Construction Cost	\$ 655,000	\$ 448,211	\$ 350,000	\$ 320,000	\$ 410,000	\$ 570,000	\$ 240,000	
SIOH	\$ 19,650	\$ 13,446	\$ 10,500	\$ 9,600	\$ 12,300	\$ 17,100	\$ 7,200	
Contingencies	\$ 32,750	\$ 22,411	\$ 17,500	\$ 16,000	\$ 20,500	\$ 28,500	\$ 12,000	
Design	\$ 39,300	\$ 26,893	\$ 21,000	\$ 19,200	\$ 24,600	\$ 34,200	\$ 14,400	
Commissioning	\$ 3,930	\$ 2,689	\$ 2,100	\$ 1,920	\$ 2,460	\$ 3,420	\$ 1,440	
Public Utility Company Rebate	(\$ 463,646)	(\$ 225,799)	(\$ 218,314)	(\$ 204,143)	(\$ 198,038)	(\$ 273,518)	(\$ 123,470)	
Total Investment	\$ 286,984	\$ 287,851	\$ 182,786	\$ 162,577	\$ 271,822	\$ 379,702	\$ 151,570	
PROJECT ECONOMICS								
Fuel Replaced by Biomass	Propane	Propane	Propane	Propane	Propane	Propane	Propane	
Annual Heating Cost Savings	\$ 35,231	\$ 16,008	\$ 9,995	\$ 9,763	\$ 18,683	\$ 37,343	\$ 8,786	
Annual O&M Savings	\$ 2,782	\$ 1,565	\$ 1,159	\$ 1,159	\$ 1,565	\$ 2,782	\$ 1,159	
Savings to Investment Ratio	2.19	1.00	1.00	1.11	1.24	1.75	1.07	
Annualized Rate of Return (10yr)	10.4%	5.9%	5.8%	6.2%	6.9%	8.9%	6.0%	
Internal Rate of Return (25yr)	18.2%	9.0%	8.9%	9.8%	11.0%	15.1%	9.4%	
Simple Payback (years)	8.1	18.0	18.3	16.7	14.5	10.2	17.3	

Table 3. Estimated Project Economics¹

To finance the design phase of the seven biomass sites, the ORARNG received a \$250,000 Woody Biomass Utilization Grant (WBUG) from the USDA Forest Service, which covers seventy-three percent of the design phase cost for the project. The state is covering the remaining twenty-seven percent (\$83,000) of the design cost. The total investment for the project as a whole (including design, construction, SIOH, contingencies, and commissioning) will be around \$3,430,220. Overall, the average simple payback for the entire project is equal to 14.7 years. Table 3 highlights additional current project funding and cost estimates for each of the seven ORARNG facilities along with a couple financial analysis figures.

Presently, all of the selected ORARNG sites are dependent on propane for heating, which provided the main financial incentive for converting to pellet boilers. The Guard pays around \$20.00 per MMBtu for propane whereas wood pellets should be less than half the cost (roughly \$9.30 per MMBtu). Switching from propane to pellet fuel is expected to save the Oregon Army National Guard an average of \$19,401 per year (per facility) in heating costs and on average \$1,739 annually (per facility) in maintenance costs.

There are various methods that can be employed to analyze a project's financial viability. One financial analysis tool is the annualized rate of return (ARR). The purpose of the ARR is to

¹ The simple payback figures included in Table 1 are calculated using the total project investment divided by annual heating cost savings. These payback estimates are greater than the ones included in the more detailed financial analysis section in Appendices A-J, which are based on a different calculation (total investment/first year dollar savings). Please see Appendices A-J for a more detailed financial analysis of each facility.

identify the potential rate at which an investment will increase (or decrease) each year. Calculating a ten year ARR is valuable for investors because this timeframe best reflects their shorter term focus. The ARR is calculated using a project's return on investment (ROI), which acts as a multiplier at which an investment is estimated to grow over a set time period.²

Another useful financial analysis calculation is the internal rate of return (IRR). The IRR estimates a facility's expected return from an investment over time (a measurement of the efficiency of the investment). The IRR is useful for facility owners and calculating it over a twenty-five year time period coincides with the typical projected life of a wood-energy system (twenty-five to thirty years). It is calculated as comparison of fuel savings for term to total project investment.³

A basic financial analysis of the National Guard's biomass project shows that the project's average ten year annualized rate of return (ARR) equals 7.2% and its average twenty-five year internal rate of return (IRR) is equal to 11.6%. These figures help indicate that the National Guard's project is financially favorable (current markets look for a range between five to ten percent ARR figures).

The Youth Challenge Program Facility (YCF) is especially financially favorable with a ten year ARR of 10.4%, a twenty-five year IRR of 18.2%, a savings to investment ratio of 2.19, and an expected payback of 8.1 years. In comparison to the rest of the ORARNG sites, the least financially attractive facility appears to be the Biak Training Center with a ten year ARR of 5.8%, a twenty-five year IRR of 8.9%, a savings to investment ratio of one, and a payback period of 18.3 years. In this analysis, inflation rates of 1.5% for wood and 5.6% for propane were used.⁴

Overall, these calculations indicate that the National Guard's project as a whole is favorable from a financial investment perspective. All of the facilities have a calculated ARR greater than five percent, and current markets are looking for an ARR between five to ten percent. Additionally, the project's IRR indicates positive growth across all seven facilities. Please see Appendices A-J for a more detailed financial analysis of each facility.

According to Tetra Tech, a basic take away lesson comparing the financial viability of the seven ORARNG facilities is the greater their annual energy expenses, the greater the economic benefit because of the relatively high fixed costs for the biomass boiler installations. As required boiler sizes increase, incremental project costs are reduced as project costs increase at a slower rate compared to fuel cost savings. Therefore, the return on investment for the ORARNG's project is primarily driven by the annual heating cost. The greater a facility's energy requirements and change in cost of using biomass versus an alternative fuel, the greater the potential savings will

² ARR Formula: ((1+ROI)^{1/N})-1

N = # of years ROI = Return on investment = B - C/P

B - C = Cumulative fuel cost savings added up over a set period of time P = Total project investment.

³ IRR Formula: PNW = $0 = F_a/(1 + R)^a$

PNW = Present Net Worth = 0 F = Income Each Year = Fuel Savings Each Year a = Year R = Rate of Return ⁴ U.S. Energy Information Administration for all inflation estimates except wood. Wood inflation estimate was provided by local expert Andrew Haden (www.Wisewood.US)

be—compared to the effect of capital construction costs, which are only marginally greater between each of the sites.

Incentives can also significantly affect a project's payback. For example, comparing the Burns Armory's project to YCF's, the armory has a much lower annual heating expense versus YCF. Additionally, the armory's total project cost is close to half of YCF's cost. Nevertheless, because Oregon biomass incentives are calculated as a percentage of project costs, YCF's payback period is reduced significantly more than the armory's. Consequently, projects with a higher total cost like YCF can receive a greater incentive benefit, and combined with greater annual heating cost savings, this can lead to significantly reduced payback periods.

Facility Background

Table 4. General Information for the ORARNG Converted Facilities

LOCATION / BUILDING	Bend YOUTH CHALLENGE FACILITY	Redmond COUTES	Powell Butte BIAK TRAINING CENTER	Burns ARMORY	Umatilla BLDG # 30 SIM CENTER	Umatilla BLDG # 36 DINING HALL	Umatilla BLDG # 53 BARRACKS
Building Area (ft ²)	71,439	10,464	20,560	12,426	15,787	6,920	72,114
Year Built	1984	1989	1984	1954	1942	1943	1942
Project Type	Retrofit	Retrofit	Retrofit	Retrofit	Retrofit	Retrofit	Retrofit

Following are brief descriptions of each of the facilities to be served by biomass heating systems: Youth Challenge Program Facility

Located in Bend, Oregon, the Youth Challenge Program Facility was built in the early '80s. Originally a night vision testing facility, the building has been repurposed and now acts as an academy for at-risk youth. The building operates continuously for ten months during the academic year and it has very high use from a heating and domestic hot water standpoint. Because of these characteristics, the economics (the ARR, IRR, savings to investment ratio, and payback period) of converting this facility are especially favorable compared to some of their other

Figure 2. Youth Challenge Program Facility

smaller National Guard facilities without year-round heating demand.

Central Oregon Unit Training and Equipment Site

Located in Redmond, Oregon, the Central Oregon Unit Training and Equipment Site (COUTES) is a 10,000 square foot metal building that houses a high bay maintenance shop where the ORARNG does military vehicle maintenance along with having some office space. Volz said they are looking into putting in some ceiling radiant panels in the high bay area along with the biomass boiler. He explained that three of the ORARNG sites (the Youth Challenge Facility, Biak Training Center, and Burns Armory) already have hot water boilers installed, which are pretty simple to change out. However, the COUTES site has direct-fired radiant heating and it does not have an existing hydronic boiler system, making things a little more complicated.

Biak Training Center

Nearby the COUTES site and located in Powell Butte is the Biak Training Center. The center supports a wide variety of military branches in addition to other emergency response agencies. The army carries out training exercises on the 22,255 acres of federal land located nearby. The pellet system will heat a simulation center, classroom, and an administrative building, totaling a little over 20,000 square feet for the three facilities.

Burns Armory

The Burns Armory is a typical older armory. It is a 12,000 square foot facility that was built around 1954.

Figure 4. Biak Training Center

Figure 3. Burns Armory

Umatilla Training Center Facilities (Buildings #30, #36, and #53)

There are three different facilities (referred to as Buildings #30, #36, and #53) located at the Umatilla Training Center in Hermiston, Oregon that will be converted to biomass heating systems. Building #30 is a 15,000 square foot metal building that serves as a simulation center for training exercises. The building has a steam boiler that will be converted along with hot water piping. Building #36 is a 7,000 square foot dining hall. Another building, next to the dining hall, Building #53 is a barracks that does not have continuous occupancy but does include an existing steam system.

The Oregon Department of Energy recently awarded a Wood Energy Cluster grant to ORARNG to conduct a biomass district heating feasibility study at the Umatilla Training Center.⁵ Volz explained that Tetra Tech will perform the feasibility study to determine whether installing a biomass district heating network would make more sense from an economic and efficiency standpoint versus replacing individual boilers on a building-by-building basis. Since many of the buildings at the Umatilla Training Center are in close proximity to one another, it could be advantageous to install one or more central heating plants that would serve clusters of buildings.

The Training Center's current building stock, heating systems, and steam piping infrastructure are growing old and will need replacing. In the long-term, there are plans to completely replace buildings constructed during the '40s, and there are near-term plans to renovate and upgrade other existing buildings. Taken together, these development plans provide a good opportunity to examine the feasibility of constructing a biomass district heating system at the site.

⁵ For more information about the grant, please see <u>http://www.oregon.gov/energy/RENEW/Biomass/Pages/Wood-</u> Energy-Cluster-Pilot-Project.aspx

Currently, under the Base Realignment and Closure process, the Umatilla site is transferring from the U.S. Army to ORARNG occupancy. The ultimate heating configuration of the site will be determined over the next five to ten years, so Tetra Tech will be proposing "strategies that are flexible, and scalable—allowing us to use a modular approach so we can supply short term needs and expand the system as the site is redeveloped."

Figure 5. Umatilla Building #30 Simulation Center

Figure 6. Umatilla Site Aerial View

Figure 7. Umatilla Buildings #36 Dining Hall and #53 Barracks

Readiness Center

The National Guard also evaluated another potential project outside of the WBUG grant at the Readiness Center, a new 60,000 square foot LEED certified building. The goal is for this Center is to be the first completely net zero facility within the ORARNG. The Center is located in The Dalles, Oregon in the northern part of the state along the scenic Columbia Gorge. The facility has a drill hall, assembly area, and administrative offices.

The ORARNG will use a wide variety of technologies to make the building as energy efficient as possible. In contrast to the other seven WBUG facilities, a ground-source heat pump will act as the primary heating source for the Readiness Center. The ground-source heat pump will provide about ninety percent of the site's heat load, along with a condensing high efficiency natural gas boiler for supplemental heating. A dual-fuel biomass pellet boiler was proposed to meet the remaining ten percent of heating demand, but this option was not selected due to project funding constraints. The ground-source heat pump could be augmented with biomass heating, so that all of the thermal loads will be covered one hundred percent using renewables. They are also planning to install a solar PV system to offset the building's electrical usage.

Building Envelope Upgrades

In conjunction with converting existing buildings to biomass systems, the ORARNG is considering some building envelope upgrades. As mentioned earlier, the Guard was selected as one of eight US Army Pilot Net Zero Energy Installations charged with reducing energy use by sixty-five percent from a 2003 baseline and to achieve the remaining thirty-five percent offset by using renewables. The building envelope upgrades will not only help them achieve their goals in terms of utilizing renewable biomass energy, but will also help with energy efficiency improvements. It is fortuitous that the timing of these energy efficiency upgrades coincides with the HVAC conversions. The Guard could potentially gain additional cost reductions by minimizing the design size of their pellet boilers, which could then help offset the cost of the building envelope upgrades. Biomass also helps meet the Net Zero Energy Goal's renewable energy requirement.

Tetra Tech believes that the drive for renewable energy adoption in support of the Net Zero Energy Goal creates a premium incentive over natural gas, making it more feasible to replace aging gas boilers with biomass systems. Currently, a key barrier to wider biomass adoption is cheaper natural gas. Power is generally inexpensive in the Northwest—especially if there is access to natural gas—but Volz thinks that natural gas prices may rapidly accelerate if liquid natural gas is exported to other countries—much faster price increases than biomass—which will make biomass look more advantageous as time goes on.

Project Aggregation and Clustered Facility Efficiencies

The Oregon Army National Guard's seven projects provide valuable lessons from a design-toimplementation perspective related to project aggregation (multiple biomass projects under the same financial bundle) and in terms of the efficiencies that can be achieved through geographically clustered facilities.

According to Tetra Tech, there are many more advantages than disadvantages being part of a larger scale aggregated effort to convert to biomass. For example, carrying out multiple projects simultaneously allows the ORARNG to achieve many *economies of scale* from a design perspective such as the ability to standardize design between many facilities. Given the large number of National Guard buildings, standardization is also important from a maintenance and performance perspective (which are key in terms of meeting the Guard's needs). Additional economies of scale result because the projects are clustered in a compact geographical range. Because the sites are in close proximity to one another, the Guard should be able to obtain a *multi-year contract for fuel pricing*, allowing them to save on fuel costs.

However, there are also a number of potential disadvantages that should be noted with being part of a large-scale, aggregated biomass project. For instance, a higher level of effort is required to develop and implement all of the details and logistics for a project cluster versus a single project. Furthermore, converting seven buildings at once means there is more risk if things are not done correctly the first time. "It is not a rearview mirror look where we've actually designed and built these systemsSo, we don't have all of the [hands on] experience, and some of this will be based on estimates," Volz explained. Ideally, there would be a pilot project before implementing

a large number of projects, and the pilot would provide a year's worth of experience and lessons learned that could then be applied to a larger number of buildings.

Volz noted that there are existing biomass project installations in their general geographical area and believes that there are *opportunities for collaboration* that would benefit all groups. As Volz points out, there are around twelve to fifteen biomass boiler installations in public buildings nearby (such as the cluster in John Day, Oregon, which is 70-120 miles away from the various ORARNG sites). They are considering collaboration with these sites through things like *cooperative fuel purchasing agreements*:

"There is a regional airport and a U.S. Forest Service airbase that is close to this area and they have to buy fuel and there are also schools and hospitals in the area that also have to purchase fuel. [Cooperative fuel purchasing agreements] are something that weren't necessarily on our horizon, we probably would have just done a contract on our own, but it's an interesting concept to achieve some economies of scale that would benefit both the state and other public hospitals and schools."

Tetra Tech believes that Malheur Lumber located in John Day, Oregon is a solid option as a fuel supplier for some of their facilities. A lot of Malheur Lumber's fuel supply comes from National Forest land, which matches the restoration goals of the Forest Service included in the WBUG grant.

Quantified Aggregation Benefits⁶

		AREA			TAL
EEM	SITE BUILDING	(ft^2)	DESCRIPTION	CC	DST
			Biomass radiant heating		
RE-1	COUTES FMS	10,464	system	\$	513,650
RE-2	Biak Brett Hall	20,560	Biomass heating system	\$	401,100
	Umatilla Simulation				
RE-3	Center	15,787	Biomass heating system	\$	469,860
RE-4	Umatilla Dining Hall	6,920	Biomass heating system	\$	653,220
			<u> </u>		
RE-5	Umatilla Billeting	72,114	Biomass heating system	\$	275,040
			Biomass radiant heating		,
RE-6	Bend YCF	71,439	system	\$	750,630
			-		, , , , , , , , , , , , , , , , , , ,
RE-7	Burns Armory	17,180	Biomass heating system	\$	366,720
	TOTAL	214,464		\$	3,430,220

Table 5. Fort Oregon Bundled Project Cost Estimates

⁶ Note: The data analysis in the "Quantified Aggregation Benefits" and "Biomass Energy Co-Benefits" sections was provided by Tetra Tech.

As it turns out, there are also quantifiable benefits from using a project bundling approach versus individual boiler installations. After running the numbers, Tetra Tech estimates that bundling all seven individual biomass pellet boilers into a single design-build procurement package should lead to a cost savings between five to ten percent versus individual procurements using a traditional design-bid-build approach. This represents an estimated savings in the range of \$180,000 to \$300,000 for the \$3,430,220 project. This net overall savings includes volume discounts for major equipment, materials, and labor. The volume discount on major equipment will be a greater percentage (twelve to eighteen percent), but the installation labor accounts for more than half of the overall project cost because there is no corresponding discount on labor.

There could also be significant savings by going with a district heating system at the Umatilla Training Center versus relying on individual boiler installations:

- 34% Capital Expenditure Savings = \$990,295
 - \$2,950,395 (eight individual building boilers & fuel silos)
 - \$1,960,000 (one district central plant & fuel storage + piping network)
- 63% Operational Expenditure Fuel Savings = \$70,000 per year
 - \circ 700 tons/year biomass pellets at \$160 per ton = \$112,000 per year
 - \circ 700 tons/year biomass wood chips at \$60 per ton = \$42,000 per year

Biomass Energy Co-Benefits

According to Tetra Tech, beyond just providing heating cost savings to the Guard, there are additional co-benefits of using biomass systems that the ORARNG's project should provide. Some of these co-benefits are summarized below:

- Wildfire Cost Reductions: The average annual U.S. Forest Service fire suppression expenditures nationwide have exceeded \$1,000,000,000 per year since 2000. Eighty-five percent of Oregon's large fire costs occur in the east-side region where ORARNG's proposed biomass cluster is located. For FY2002-FY2011 Oregon Department of Forestry spent over \$197,000,000 on fire suppression with over \$70,000,000 spent in the Central Oregon and Northeast Oregon districts where the ORARNG biomass cluster is located.⁷
- *Energy Security:* On-site biomass fuel storage provides a minimum six-month fuel supply. Existing propane storage tanks currently provide only two weeks to a month of reserve fuel supply.
- Job Creation: Individual biomass boiler installations create short-term constructions jobs, long-term service/maintenance jobs, and jobs in the forest products sector for woody biomass harvesting, fuel processing, and delivery. The proposed Fort Oregon Biomass cluster projects are expected to create approximately eighty-nine short-term construction jobs and sustain two long-term forest products jobs.
- Economic development: Rural Oregon unemployment in Crook (13.3 percent), Deschutes (10.5 percent), Harney (11.6 percent), and Umatilla (8.0 percent) counties is substantially higher than the state-wide (8.4 percent) and national rates (7.8 percent)⁸. Employment in the forest products industry in Oregon has been in decline for decades. The opportunity to create a local sustainable woody biomass based fuel industry offers a chance to reverse this negative trend. The ORARNG is exploring opportunities at the Umatilla Training

⁷ Sources: <u>http://www.oregon.gov/odf/fire/fpfc/cliffpres.pdf</u>; <u>http://www.oregon.gov/odf/fire/fpfc/dfc.pdf</u>

⁸ Unemployment rates as of 12/01/12

Center to work with the Oregon Department of Forestry (ODF), local county development agencies, the Confederated Tribe of the Umatilla Indian Reservation, and forest resource companies to develop a woody biomass fuel infrastructure to supply military, industrial, and community energy needs.

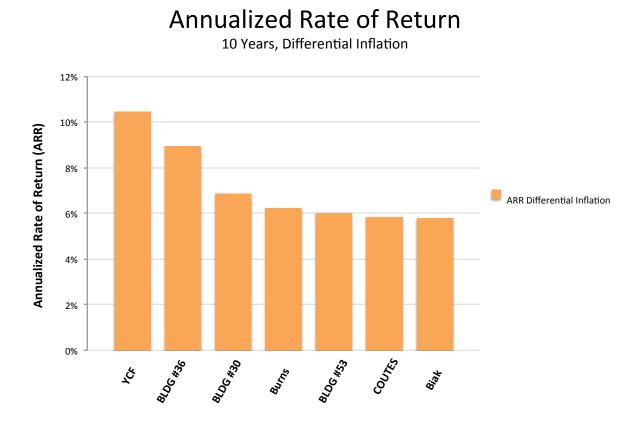
Lessons Learned

Based on the National Guard's experience, Tetra Tech emphasized that there are a number of key factors that facilities should pay attention to when considering converting to a biomass system:

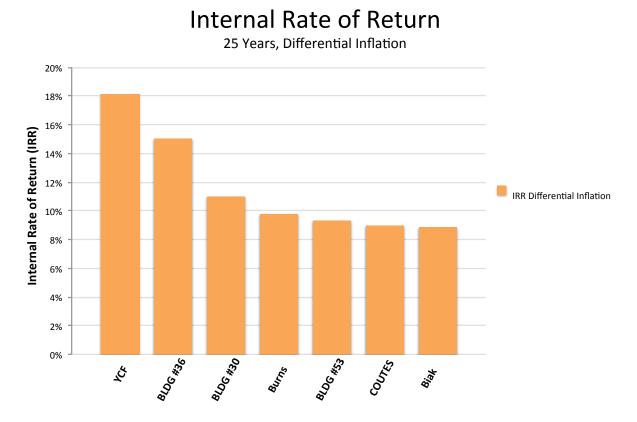
- 1. *A fuel supply that is both economical and sustainable is of critical importance.* "You can have a perfect system but without an economic or reliable fuel supply, you can be very disappointed," Volz noted.
- 2. *The type and economics of biomass fuel and the operations and maintenance required.* Both pellets and chips were evaluated for the ORARNG sites. Volz explained that storage, material handling, and operation and maintenance requirements become more onerous with woodchips. Because most the ORARNG's sites are smaller and geographically distributed, the economics for woodchips did not look as favorable compared to pellets.
- 3. *The equipment selection.* There are a lot of biomass equipment manufacturers out there, but many of them are very small outlets. "[The U.S. is] decades behind the technology in Europe. We just have small fabricating systems, so the other challenge is doing your research and finding the right technology."
- 4. *Equipment support availability.* "Even if you get the right technology, you need to make sure it can be supported. If you get a really sophisticated system, you need to have someone who will be able to support and maintain it."
- 5. *Look to others who have installed similar biomass systems*. Learning from the success and failures of others will highlight best practices that can help a project succeed as well as point out pitfalls to avoid.

Conclusion

Currently, the next steps in the ORARNG's biomass project are being planned to carry the project forward from design to implementation. In 2013, pellet boiler design and construction are slated to begin at the Biak Training Center and COUTES in addition to conducting feasibility studies for installing a biomass district heating system and combined heat and power plant at the Umatilla Training Center. In 2014, pellet boiler design and construction is planned to begin at the Youth Challenge Program Facility and Burns Armory. Lastly, in 2015, assuming favorable feasibility study results, the current plan is to start Phase 1 design and construction of a biomass wood chip district heating plant at the Umatilla Training Center.


Overall, Tetra Tech believes that the ORARNG's biomass project will provide a wide range of benefits once completed. "We are excited about the biomass grant because there are benefits for the National Guard, for forest health, and for the local economy," he emphasized. However, Volz does not appear to want to stop with just these seven conversions to biomass systems. He is hopeful that the seven conversions are just the beginning of a larger plan to economically convert National Guard sites to biomass. If they can get the design funding, there are additional buildings around the state that the National Guard would like to convert to biomass. If the funding comes

through, he said there are an additional five buildings that are good biomass conversion candidates that could be included as part the ORARNG project. As mentioned earlier, the ORARNG is evaluating the feasibility of developing a district-heating system at a 25,000 acre Umatilla Training Center in Umatilla, Oregon. Combined heat and power could be very advantageous because it would have favorable conditions with high demand and load. If approved, this combined heat and power plant could lead to another five buildings being hooked up to biomass at a central location as part of a 2nd phase build.


Lastly, it is worth noting that (from a policy perspective) the National Guard's biomass project highlights the uneven playing field that biomass energy faces within the policy realm. In fact, the major frustrations that Volz has experienced in working on the project are not related to the project design process, but are associated with policy incentives. More specifically, Volz, along with many others connected to the biomass industry, are frustrated that the public policies and incentives currently being used for biomass energy development are behind the curve. "There are federal and state incentive programs for renewable energy that generate power, but there's a real gap in terms of thermal energy," Volz said. He explained that they were not able to take advantage of renewable energy incentives for the ORARNG's project. There was a renewable energy grant through the Oregon Department of Energy, but the National Guard's project was ineligible because the grant was only for power production, not thermal energy. He went on to point out that the Federal Investment Tax Credit offers a payback for electricity, but again there is nothing for biomass thermal energy. There are Renewable Energy Certificates for renewable power production, but not a good, similar standard for thermal energy credits. "It would helpful if there was a more comprehensive approach on the federal and state basis to recognize the value of thermal energy," Volz said. Current policies do not recognize or match the technology, capabilities, and opportunities associated with biomass utilization-especially for biomass thermal applications.

As a footnote to this policy conundrum, The Oregon Department of Energy (ODOE) has recognized this gap and is proactively working to help level the playing field for biomass projects. ODOE has issued a new incentive for renewable thermal projects that do not generate electricity, but use renewable resources such as biomass to provide thermal energy. This new funding opportunity is first available beginning in March 2013. ORARNG's projects could be eligible for an incentive of up to thirty-five percent of the project cost under this new funding opportunity.

Appendix A: Financial Analysis Graphs

Examining the ARR graph above of the seven ORARNG facilities, YCF will likely experience the highest expected growth rate each year based on a ten year time period. YCF has the highest ten year ARR equal to 10.4% and Biak has the lowest ARR at 5.8%. The project's average ten year ARR equals 7.2%. All seven of the facilities are within the five to ten percent ARR range that investors typically look for, an indication that this project is favorable from a financial investment perspective.

Examining the IRR graph above, YCF will likely have the greatest return on investment (18.2%) over a twenty-five year time period and Biak Training Center will experience the lowest return (8.9%). The average twenty-five year IRR for the project as a whole equals 11.6%. Overall, the project as a whole appears to be financially attractive with the calculated IRRs indicating positive growth across all seven facilities.

Appendix B: Project Summary Tables¹

LOCATION / BUILDING	Bend YOUTH CHALLENGE FACILITY	Redmond COUTES	Powell Butte BIAK TRAINING CENTER	Burns ARMORY	Umatilla BLDG # 30 SIM CENTER	Umatilla BLDG # 36 DINING HALL	Umatilla BLDG # 53 BARRACKS
General Information							
Building Area (ft ²)	71,439	10,464	20,560	12,426	15,787	6,920	72,114
Year Built	1984	1989	1984	1954	1942	1943	1942
Project Type	Retrofit	Retrofit	Retrofit	Retrofit	Retrofit	Retrofit	Retrofit
Equipment Specifications							
Manufacturer (basis of design)	Köb	Köb	Köb	Köb	Köb	Köb	Köb
Model	Pyrot	Pyrot	Pyrot	Pyrot	Pyrot	Pyrot	Pyrot
Output kW	540	300	220	220	300	540	220
Output MMBtu/hr	1.84	1.02	0.75	0.75	1.02	1.84	0.75
Efficiency LHV	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%	85.2%
Efficiency HHV	92.0%	92.0%	92.0%	92.0%	92.0%	92.0%	92.0%
Components		Containerized	Containerized		Containerized	Containerized	Containerized
	Storage tank Pellet silo	Storage tank Pellet silo	Storage tank Pellet silo	Storage tank Pellet silo	Storage tank Pellet silo	Storage tank Pellet silo	Storage tank Pellet silo
	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger	Pellet Auger
	Boiler controls	Boiler controls	Boiler controls	Boiler controls	Boiler controls	Boiler controls	Boiler controls
	Auto ignition	Auto ignition	Auto ignition	Auto ignition	Auto ignition	Auto ignition	Auto ignition
	Ash extraction	Ash extraction	Ash extraction	Ash extraction	Ash extraction	Ash extraction	Ash extraction
	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning	Tube cleaning
Biomass Percent of Building Heating & DHW	100%	100%	100%	100%	100%	100%	100%
Backup Unit	Propane	Propane	Propane	Propane	Propane	Propane	Propane
Fuel Specifications							
Composition	Ponderosa Pine	Ponderosa Pine	Ponderosa Pine	Ponderosa Pine	Ponderosa Pine	Ponderosa Pine	Ponderosa Pine
composition	wood pellets	wood pellets	wood pellets	wood pellets	wood pellets	wood pellets	wood pellets
Source	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction	Forest Service stewardship contracts - thinning & fuels reduction
Supply Radius	154	135	129	73	155	155	155
Delivery Frequency Per Year	4	2	0	1	2	4	0
Quantity Delivered (tons)	28	28	28	28	28	28	28
Cost Per Ton (BDT) Delivered	\$ 160	\$ 160	\$ 160	\$ 160	\$ 160	\$ 160	\$ 160
Moisture Content	<u>≤ 4%</u>	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u><</u> 4%	<u>≤</u> 4%
Fuel Storage Capacity (tons)	50	50	35	35	50	50	35
Annual Consumption (tons)	90	38	24	25	43	85	20
Annual Biomass Fuel Cost	\$ 14,400	\$ 6,080	\$ 3,840	\$ 4,000	\$ 6,880	\$ 13,600	\$ 3,200

¹ The tables on the following pages were created by Tetra Tech and summarize the details of the Oregon Army National Guard's biomass project.

LOCATION / BUILDING	Bend YOUTH CHALLENGE FACILITY	Redmond COUTES	Powell Butte BIAK TRAINING CENTER	Burns ARMORY	Umatilla BLDG # 30 SIM CENTER	Umatilla BLDG # 36 DINING HALL	Umatilla BLDG # 53 BARRACKS
PROJECT FUNDING							
2012 Hazardous Fuels Woody Biomass Utilization Grant (design)	\$ 71,863	\$ 36,419	\$ 33,014	\$ 30,097	\$ 25,118	\$ 30,810	\$ 22,679
State Funds	\$ 99,369	\$ 13,641	\$ 12,366	\$ 100,456	\$ 9,408	\$ 11,540	\$ 8,494
Federal Funds	\$ 298,106	\$ 275,466	\$ 207,253	\$ 100,456	\$ 265,607	\$ 374,907	\$ 144,515
OR Dept Energy Commercial Thermal Incentive	\$ 281,293	\$ 188,124	\$ 148,467	\$ 135,711	\$ 169,727	\$ 235,962	\$ 99,352
Total project funding	\$ 750,630	\$ 513,650	\$ 401,100	\$ 366,720	\$ 469,860	\$ 653,220	\$ 275,040
PROJECT COSTS							
Construction Cost	\$ 655,000	\$ 448,211	\$ 350,000	\$ 320,000	\$ 410,000	\$ 570,000	\$ 240,000
SIOH	\$ 19,650	\$ 13,446	\$ 10,500	\$ 9,600	\$ 12,300	\$ 17,100	\$ 7,200
Contingencies	\$ 32,750	\$ 22,411	\$ 17,500	\$ 16,000	\$ 20,500	\$ 28,500	\$ 12,000
Design	\$ 39,300	\$ 26,893	\$ 21,000	\$ 19,200	\$ 24,600	\$ 34,200	\$ 14,400
Commissioning	\$ 3,930	\$ 2,689	\$ 2,100	\$ 1,920	\$ 2,460	\$ 3,420	\$ 1,440
Public Utility Company Rebate	(\$ 463,646)	(\$ 225,799)	(\$ 218,314)	(\$ 204,143)	(\$ 198,038)	(\$ 273,518)	(\$ 123,470)
Total Investment	\$ 286,984	\$ 287,851	\$ 182,786	\$ 162,577	\$ 271,822	\$ 379,702	\$ 151,570
PROJECT ECONOMICS							
Fuel Replaced by Biomass	Propane	Propane	Propane	Propane	Propane	Propane	Propane
Annual Heating Cost Savings	\$ 35,231	\$ 16,008	\$ 9,995	\$ 9,763	\$ 18,683	\$ 37,343	\$ 8,786
Annual O&M Savings	\$ 2,782	\$ 1,565	\$ 1,159	\$ 1,159	\$ 1,565	\$ 2,782	\$ 1,159
Savings to Investment Ratio	2.19	1.00	1.00	1.11	1.24	1.75	1.07
Annualized Rate of Return (10yr)	10.4%	5.9%	5.8%	6.2%	6.9%	8.9%	6.0%
Internal Rate of Return (25yr)	18.2%	9.0%	8.9%	9.8%	11.0%	15.1%	9.4%
Simple Payback (years)	8.1	18.0	18.3	16.7	14.5	10.2	17.3

Appendix C: Combined Projects Life-Cycle Cost Analysis

	ARN	IG LIFE CYCLE COST AN	ALYSIS (LCCA) SUMMAR	YY	
LOCATION:	FORT OREGON	REGION NO:	4	PROJECT NO.:	411300
PROJECT TITLE:	Renewable Energy - Biomass		<u> </u>	FY:	
ANALYSIS DATE:	11/29/12	ECONOMIC LIFE:	20 YEARS		
PREPARED BY:	Craig Volz	CHECKED BY:	Larry Hamburg		
#1 INVESTMEN	T COSTS:				
А	. CONSTRUCTION COSTS	\$ 2,993,211	-		
E	8. SIOH	\$ 257,416	(Supervision + Inspection	on + Overhead)	
	C. DESIGN COST	\$ 179,593			
	D. TOTAL COST (1A+1B+1C)		\$ 3,430,220		
	E. SALVAGE VALUE OF EXIST	· ·	\$		
	F. PUBLIC UTILITY COMPANY G. TOTAL INVESTMENT (1D-1E		\$ 1,706,927 \$ 1,723,293		
C	. TOTAL INVESTMENT (ID-TE	-1r)	\$ 1,725,295		
#2 ENERGY & D	EMAND SAVINGS (+) / COST	5 (-)			
	R 85-3273-X USED FOR DISCOUNT F	ACTORS:	09/01/11	REGION #	4
NOTE: IN THIS A	ANALYSIS, MM = 1,000,000				
ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/YR (#2)	ANNUAL \$ SAVINGS (#3) (#1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUE SAVINGS (#5) (#3 X #4)
A. ELEC. (Site) B. DIST. OIL					
C. RESID. OIL			-		
D. NAT. GAS				·	
E. PPG/LPG	\$ 20.10	9,306.2	\$ 187,027	17.05	\$ 3,188,814
F. BIOMASS	\$ 9.30	(5,584.0		15.61	\$ (810,846)
G. WATER					
DEMAND					
H. SAVINGS I. TOTAL		3,722.5	y \$ 135,083		\$ 2,377,968
I. TOTAL		5,122.1	\$ 135,083		\$ 2,377,968
#3 NON-ENERG	Y SAVINGS (+) / COSTS (-)				
A. ANNUAL REC	CURRING OM & R (+/-)	\$ 3,500			
	1 DOE UPV DISCOUNT FACTO	R	14.88		
:	2 DISCOUNTED SAVINGS/COS	T (3A X 3A1)		\$ 52,080	
B. NON-RECURE	RING SAVINGS (+) OR COSTS (-)			
ITEM	SVGS (+) COST (-) (#1)	YEAR OF OCCUR. (#2)	DOE SPV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
a					
b.					
с.					
d. TOTAL					
C. TOTAL NON-	ENERGY DISCOUNTED SAVIN	GS (3A2 + 3Bd4)		\$ 52,080	
#4 FIRST YEAR	DOLLAR SAVINGS (213 + 3A	+ 3Bd1/YRS ECON LIFE)		\$ 138,583	
	BACK IN YEARS (1G/#4)	····		12.4	
	DISCOUNTED SAVINGS (215 -	+ 3C)		\$ 2,430,048	
#7 SAVINGS TO	INVESTMENT RATIO (SIR) #	6/(1G)]		1.41	

LO	CATION:	FOR	T OREGON	REGION:		4	PROJECT NO:	411	300
	OJECT TITLE:		wable Energy - E		ı Sv	stems	FISCAL YEAR:	201	
	ALYSIS DATE:		11/29/12	ECON LIFE:	<u>, - </u>	20	PREPARER:	Cra	ig Volz
							CHECKED BY:		y Hamburg
1. I	NVESTMENT COSTS:								<i>,</i>
Α.	CONSTRUCTION COST							\$	2,993,211
Β.	SIOH						3.0%	\$	89,796
C.	CONTINGENCIES						5.0%	\$	149,661
C.	DESIGN						6.0%	\$	179,593
C.	COMMISSIONING						0.6%	\$	17,959
D.	TOTAL COST (1A+1B+1C))						\$	3,430,220
E.	SALVAGE VALUE OF EXIS	STING	EQUIPMENT					\$	-
F.	PUBLIC UTILITY COMPAN	VY RE	BATE					\$	1,706,927
G.	TOTAL INVESTMENT (1D	-1E-1I	=)					\$	1,723,293
	ENERGY SAVINGS (+)/COS								
DA	TE OF NISTR 85-3273-X U	SED F	OR DISCOUNT	FACTORS			09/01/11	С	ommercial
EN	ERGY		COST	SAVINGS	Λ	NNUAL\$	DISCOUNT	פוח	COUNTED
	URCE	4	S/MMBTU(1)	MMBTU/YR(2)			FACTOR(4)		VINGS(5)
	ELECTRIC	\$		0.0	\$	VING0(3)	14.11	\$	VIIVO3(3)
	DISTILLATE	\$	-	0.0		-	15.74	φ \$	-
	RESIDUAL	\$	-	0.0	ֆ \$	-	21.74	φ \$	-
	NAT. GAS	\$	-	0.0	φ \$	-	15.64	φ \$	-
	PROPANE/LPG	\$	20.096	9,306.7	φ \$	187,027	17.05	\$	3,188,814
	BIOMASS PELLETS	\$	9.302	(5,584.0)		(51,944)	15.61	\$	(810,846)
г.	BIOWASS FELLETS	φ	\$.302 \$/k-gal	(0,004.0) k-gal	φ	(31,944)	15.01	φ	(010,040)
G.	WATER	\$	-	0.0	\$	-	16.65	\$	-
	DEMAND SAVINGS	\$	\$/kW/YR	kW 0.0	\$		14.11	\$	
	TOTAL	φ	-	3,722.7	ֆ \$	- 135,083	14.11	ې \$	2,377,968
1.	TOTAL			3,122.1	φ	155,065		φ	2,377,900
3. N	ION-ENERGY SAVINGS (+	-) OR	COST (-):					-	
	ANNUAL RECURRING (+/-)				\$	3,500			
	DISCOUNT FACTOR (TAB					14.88			
(2)	DISCOUNTED SAVINGS (3A X 3	3A1)					\$	52,080
_									
D. I	NON-RECURRING SAVING		SAVINGS(+)	YEAR OF	יח	SCOUNT	DISCOUNTED SAV-		
ITE	ΓN 4								
ITE	IVI		COST (-)(1)	OCCUR (2)	FА		INGS/COST (+/-)(4)	<u> </u>	
a.		\$	-			1.000			
b.						1.000 1.000			
C.	TOTAL	\$	-			1.000	\$ - \$ -		
u.	TOTAL	φ	-				φ -	-	
C. ⁻	TOTAL NON-ENERGY DIS	COUN	TED SAVINGS/	COST (3A2 + 3I	B4d)		\$	52,080
<u>4. F</u>	FIRST YEAR DOLLAR SAV	<u>INGS</u>	(2I3+3A+3Bd1/	<u>YRS ECON LIFI</u>	E):			\$	138,583
5 9	SIMPLE PAYBACK (1G/4)				_				12.4
<u>5. c</u>									
6. 1	OTAL NET DISCOUNTED							\$	2,430,048

Category	Constant	Units		Input	Ν	/MTBUs		Input		\$/	ммтви
Purchased Electric	3,412	BTU / kWh	Enter kWh>	0	=	0.0	Enter Cost / kWh>	\$ 0.0680	=	\$	19.930
Purchased Steam	1,000	BTU / Ib	Enter Pounds>	0.00	=	0.00	Enter Cost / Ib>	\$ 0.0556	=	\$	55.550
Distillate Fuel Oil	138,700	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$	18.421
Natural Gas	1,031	BTU / CuFt	Enter Cubic Feet>	0.00	=	0.00	Enter Cost / CuFt>	\$ 0.0056	=	\$	5.388
Natural Gas	100,000	BTU / Therm	Enter Therms>	0.00	=	0.00	Enter Cost / Therm>	\$ 0.5555	=	\$	5.555
LPG, Propane	91,690	BTU / gal	Enter Gallons>	101,501.80	=	9,306.70	Enter Cost / Gal>	\$ 1.8426	=	\$	20.096
Butane	102,032	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$	25.041
Bituminous Coal	24,580,000	BTU / short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 240.5500	=	\$	9.786
Anthracite Coal	25,400,000	BTU / short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	=	\$	39.679
#2 Fuel Oil	138,000	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	=	\$	40.254
Other (Define)	17,200,000	BTU / ton	Enter Units>	(324.65)	=	(5,583.98)	Enter Cost / Unit>	\$ 160.0000	=	\$	9.302
Water (per 1000 gallo	ons or other ur	nit)	Enter 1000 Gallons>	0.00			Enter Cost / K-Gal	\$1,566	6		
Demand Savings		,	Enter kW>	0			Enter Cost / kW / Year>	\$0.0	-		

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
	English Ton	2,000.000	lbs
	Metric Ton	2,204.623	lbs
	Kilogram	2.205	lbs
	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	cubic feet
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
	Therm	96.993	cubic feet
1.000	MMBTU (natural gas)	969.932	cubic feet
	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	kWh
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

		-	
	MCF>	\$0.00000100	per cubic foot
	CCF>	\$0.0100000	per cubic foot
\$1.000	MMBTU (gas)>	\$0.1000000	per therm
\$1.000	MWh>	\$0.00100000	per kWh
\$1.000	\$\$ / kW / month>	\$12.00000000	per kW / Year

Tips and Guidance:

- Type your Project's Energy Savings in Column F - Type your Location's Cost per Unit of Energy in Column L

You're done here! Go to the Project Tab!

Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year Guidance: Input 75% or less of Load Differential as kW savings calculation. If higher, you need to justify why you will save more.
e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)

NISTIR 85-3273-26, 9/2011 - United States Department of Energy, Federal Energy Management Program

 Table Ba-4. FEMP UPV* Discount Factors adjusted for fuel price escalation, by end-use sector and fuel type - Discount Rate 3%

 *** TABLE UPDATED FOR REGION 4 ONLY ***

 http://www.wbdg.org/ccb/NIST/nistir85_3273_26.pdf

Region	Year	Electric	Dist	LPG	NtGas	Elec	Dist	Resid	NtGas	Coal	Elec	Dist	Resid	NtGas	Coal	GasIn
4	1	0.97	0.91	0.99	0.95	0.97	0.88	1.10	0.96	0.97	0.96	0.88	0.86	0.96	0.95	0.97
4	2	1.92	1.77	1.97	1.88	1.91	1.71	2.24	1.87	1.92	1.89	1.72	1.66	1.90	1.88	1.95
4	3	2.84	2.63	2.94	2.77	2.81	2.53	3.38	2.73	2.85	2.79	2.56	2.47	2.80	2.77	2.93
4	4	3.73	3.48	3.89	3.64	3.68	3.35	4.53	3.57	3.75	3.67	3.39	3.29	3.69	3.65	3.90
4	5	4.59	4.33	4.82	4.49	4.52	4.17	5.69	4.39	4.63	4.50	4.22	4.11	4.56	4.50	4.86
4	6	5.41	5.17	5.75	5.33	5.32	5.00	6.86	5.20	5.49	5.30	5.05	4.93	5.42	5.32	5.82
4	7	6.21	6.01	6.66	6.16	6.08	5.82	8.02	5.99	6.33	6.07	5.89	5.75	6.27	6.12	6.78
4	8	6.98	6.84	7.55	6.98	6.82	6.64	9.16	6.78	7.14	6.82	6.72	6.56	7.12	6.90	7.73
4	9	7.72	7.67	8.44	7.80	7.53	7.46	10.30	7.57	7.94	7.53	7.55	7.37	7.97	7.66	8.67
4	10	8.44	8.49	9.31	8.61	8.22	8.26	11.43	8.36	8.72	8.22	8.37	8.17	8.83	8.40	9.58
4	11	9.14	9.30	10.16	9.41	8.89	9.07	12.55	9.14	9.48	8.89	9.19	8.96	9.69	9.14	10.47
4	12	9.82	10.09	11.00	10.20	9.54	9.86	13.65	9.90	10.22	9.55	9.99	9.74	10.53	9.85	11.34
4	13	10.49	10.88	11.81	10.98	10.18	10.64	14.73	10.66	10.96	10.18	10.78	10.51	11.37	10.56	12.20
4	14	11.13	11.65	12.62	11.75	10.80	11.41	15.79	11.40	11.67	10.80	11.56	11.27	12.19	11.25	13.04
4	15	11.76	12.40	13.40	12.51	11.40	12.17	16.84	12.14	12.36	11.41	12.33	12.01	13.01	11.92	13.85
4	16	12.37	13.15	14.17	13.26	11.99	12.91	17.87	12.86	13.04	11.99	13.08	12.74	13.82	12.57	14.66
4	17	12.97	13.87	14.91	13.99	12.55	13.64	18.88	13.58	13.71	12.56	13.82	13.45	14.62	13.21	15.44
4	18	13.54	14.59	15.64	14.71	13.09	14.36	19.86	14.28	14.36	13.11	14.54	14.15	15.40	13.84	16.21
4	19	14.09	15.28	16.35	15.42	13.61	15.06	20.81	14.97	14.99	13.64	15.25	14.82	16.18	14.45	16.96
4	20	14.63	15.96	17.05	16.12	14.11	15.74	21.74	15.64	15.61	14.15	15.93	15.47	16.94	15.04	17.68
4	21	15.15	16.63	17.72	16.80	14.60	16.40	22.63	16.31	16.22	14.64	16.60	16.09	17.68	15.62	18.38
4	22	15.65	17.27	18.37	17.47	15.07	17.04	23.50	16.96	16.81	15.12	17.25	16.70	18.42	16.19	19.06
4	23	16.14	17.89	19.01	18.13	15.53	17.67	24.34	17.60	17.39	15.58	17.88	17.29	19.15	16.75	19.73
4	24	16.62	18.50	19.62	18.79	15.98	18.28	25.16	18.24	17.95	16.04	18.50	17.87	19.87	17.28	20.38
4	25	17.09	19.09	20.22	19.44	16.41	18.87	25.96	18.87	18.50	16.48	19.10	18.43	20.59	17.81	21.01
4	26	17.54	19.66	20.80	20.07	16.83	19.45	26.73	19.49	19.03	16.91	19.68	18.98	21.30	18.32	21.63
4	27	17.98	20.23	21.37	20.69	17.24	20.02	27.49	20.09	19.55	17.33	20.25	19.51	22.00	18.82	22.23
4	28	18.40	20.77	21.92	21.30	17.63	20.57	28.23	20.69	20.05	17.73	20.81	20.03	22.70	19.30	22.81
4	29	18.82	21.30	22.45	21.90	18.02	21.10	28.95	21.28	20.54	18.12	21.35	20.54	23.38	19.77	23.38
4	30	19.22	21.82	22.97	22.49	18.39	21.62	29.65	21.85	21.01	18.50	21.88	21.03	24.06	20.23	23.94

Appendix D: COUTES Life-Cycle Cost Analysis

LOCATION:	Redmond COUTES FMS	REGION NO:	4		PROJECT NO .: 4	411300
PROJECT TITLE					FY: 2	2014
ANALYSIS DATE		ECONOMIC LIFE:	20 YEARS			
PREPARED BY:	Craig Volz	CHECKED BY:	Larry Hambur	rg		
#1 INVESTME	NT COSTS:					
	A. CONSTRUCTION COSTS	\$ 448,211	-			
	B. SIOH	\$ 38,546	-	on + Inspection	+ Overhead)	
	C. DESIGN COST	\$ 26,893	-			
	D. TOTAL COST (1A+1B+1C)		\$	513,650		
	E. SALVAGE VALUE OF EXIS		\$	-		
	F. PUBLIC UTILITY COMPAN		\$	225,799		
	G. TOTAL INVESTMENT (1D-	IE-IF)	\$	287,851		
	DEMAND SAVINGS (+) / COS IR 85-3273-X USED FOR DISCOUN			09/01/11	REGION #	4
NOTE: IN THIS	ANALYSIS, MM = 1,000,000				-	
ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/YR (#2)	SAVIN	UAL \$ NGS (#3) X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUI SAVINGS (#5) (#3 X #4)
A. ELEC. (Site)						
B. DIST. OIL						
C. RESID. OIL						
D. NAT. GAS		_	-			
E. PPG/LPG	\$ 20.33	3 1,085.5	5 \$	22,067	17.05	\$ 376,23
F. BIOMASS	\$ 9.30	(651.4)) \$	(6,059)	15.61	\$ (94,58
G. WATER						
DEMAND						
H. SAVINGS			*	16.000		¢ 201.0
I. TOTAL		434.2	2 \$	16,008		\$ 281,65
	GY SAVINGS (+) / COSTS (-)					
A. ANNUAL RE	CURRING OM & R (+/-)	\$ 500	-			
	1 DOE UPV DISCOUNT FACT			14.88		
	2 DISCOUNTED SAVINGS/CO	OST (3A X 3A1)			\$ 7,440	
B. NON-RECUR	RING SAVINGS (+) OR COSTS	5 (-)				
ITEM	SVGS (+) COST (-) (#1)	YEAR OF OCCUR. (#2)		/ FACTOR #3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
a.					/	
b						
d. TOTAL						
	-ENERGY DISCOUNTED SAVI	NGS (3A2 + 3Bd4)			\$ 7,440	
#4 FIRST YEAI	R DOLLAR SAVINGS (213 + 3)	A + 3Bd1/YRS ECON LIFE)			\$ 16,508	
#5 SIMPLE PA	YBACK IN YEARS (1G/#4)				17.4	
#6 TOTAL NET	DISCOUNTED SAVINGS (21	5 + 3C)			\$ 289,093	
io ioniline.						

LO	CATION:	Redr	nond COUTES F	REGION:		4	PROJECT NO:	411:	300
PR	OJECT TITLE:	Rene	wable Energy - E	Biomass Radian	t He	ating Syst	FISCAL YEAR:	2014	ļ
AN	ALYSIS DATE:		11/29/12	ECON LIFE:		20	PREPARER:	Crai	g Volz
							CHECKED BY:	Larr	Hamburg
<u>1. I</u>	NVESTMENT COSTS:								
	CONSTRUCTION COST							\$	448,211
В.	SIOH						3.0%	\$	13,446
C.	CONTINGENCIES						5.0%	\$	22,411
C.	DESIGN						6.0%	\$	26,893
C.	COMMISSIONING						0.6%	\$	2,689
D.	TOTAL COST (1A+1B+1C)						\$	513,650
Ε.	SALVAGE VALUE OF EXI	STIN	GEQUIPMENT					\$	-
F.	PUBLIC UTILITY COMPAN	NY RE	BATE					\$	225,799
G.	TOTAL INVESTMENT (1D	-1E-1	F)					\$	287,851
•									
	ENERGY SAVINGS (+)/CO						00/04/14	~	
DA	TE OF NISTR 85-3273-X U	SED	FOR DISCOUNT	FACTORS	<u> </u>		09/01/11	Co	mmercial
FN	ERGY		COST	SAVINGS	A	NNUAL\$	DISCOUNT	DIS	
	URCE		\$/MMBTU(1)	MMBTU/YR(2)			FACTOR(4)		VINGS(5)
_	ELECTRIC	\$	-	0.0	_	-	14.11	\$	-
	DISTILLATE	\$		0.0		_	15.74	\$	_
	RESIDUAL	\$		0.0	\$		21.74	\$	_
	NAT. GAS	\$		0.0			15.64	\$	
	PROPANE/LPG	\$	20.328	1,085.5	\$	22,067	17.05	\$	376,237
	BIOMASS PELLETS	\$	9.302	(651.4)		(6.059)	15.61	\$	(94,584)
•••		Ψ	\$/k-gal	k-gal	Ψ	(0,000)	10.01	Ψ	(04,004)
G.	WATER	\$	-	0.0	\$	-	16.65	\$	-
н	DEMAND SAVINGS	\$	\$/kW/YR	kW 0.0	\$		14.11	\$	
	TOTAL	Ψ		434.2	\$	16,008	17.11	\$	281,653
					Ŧ	. 0,000		Ŧ	201,000
<u>3. I</u>	NON-ENERGY SAVINGS (-	+) OR	<u>COST (-):</u>						
	ANNUAL RECURRING (+/-		2)		\$	500			
	DISCOUNT FACTOR (TAE					14.88			
(2)	DISCOUNTED SAVINGS (3A X :	3A1)					\$	7,440
R	NON-RECURRING SAVING	20 (+)							
D.			SAVINGS(+)	YEAR OF	פוס		DISCOUNTED SAV-		
ITE	EN/		COST (-)(1)	OCCUR (2)			INGS/COST (+/-)(4)		
a.		\$	0001 (-)(1)	00001(2)		1.000			
a. b.		Ψ			_	1.000			
С.						1.000			
	TOTAL	\$	_		-	1.000	\$		
		•					•		
C.	TOTAL NON-ENERGY DIS	COU	NTED SAVINGS/	COST (3A2 + 3	B4d))		\$	7,440
	FIRST YEAR DOLLAR SAV	<u>/INGS</u>	<u>(2I3+3A+3Bd1/</u>	YRS ECON LIF	<u>E):</u>			\$	16,508
	SIMPLE PAYBACK (1G/4)				L				17.4
	TOTAL NET DISCOUNTED				L			\$	289,093
7. 9	SAVINGS TO INVESTMEN	T RAI	<u>10 (SIR) 6/1G:</u>						1.00

Category	Constant	Units			Input		MMTBUs		Inp	out		\$/N	IMTBU
Purchased Electric	3,412	BTU /	kWh	Enter kWh>	0	П	0.0	Enter Cost / kWh>	\$	0.0680	П	\$	19.930
Purchased Steam	1,000	BTU /	lb	Enter Pounds>	0.00	Π	0.00	Enter Cost / Ib>	\$	0.0556	Π	\$	55.550
Distillate Fuel Oil	138,700	BTU /	gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	2.5550	=	\$	18.421
Natural Gas	1,031	BTU /	CuFt	Enter Cubic Feet>	0.00	Π	0.00	Enter Cost / CuFt>	\$	0.0056	=	\$	5.388
Natural Gas	100,000	BTU /	Therm	Enter Therms>	0.00	Π	0.00	Enter Cost / Therm>	\$	0.5555	=	\$	5.555
LPG, Propane	91,690	BTU /	gal	Enter Gallons>	11,839.00	Π	1,085.52	Enter Cost / Gal>	\$	1.8639	Π	\$ 3	20.328
Butane	102,032	BTU /	gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	2.5550	=	\$ 3	25.041
Bituminous Coal	24,580,000	BTU /	short Ton	Enter Tons>	0.00	Π	0.00	Enter Cost / Ton>	\$	240.5500	=	\$	9.786
Anthracite Coal	25,400,000	BTU /	short Ton	Enter Tons>	0.00	Π	0.00	Enter Cost / Ton>	\$	241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU /	gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	5.5550	=	\$	39.679
#2 Fuel Oil	138,000	BTU /	gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	5.5550	=	\$	40.254
Other (Define)	17,200,000	BTU /	ton	Enter Units>	(37.87)	=	(651.36)	Enter Cost / Unit>	\$	160.0000	=	\$	9.302
Water (per 1000 galle	ons or other u	nit)		Enter 1000 Gallons>	0.00			Enter Cost / K-Gal		\$1.5666			
Demand Savings				Enter kW>	0			Enter Cost / kW / Year>		\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
1.000	English Ton	2,000.000	lbs
1.000	Metric Ton	2,204.623	lbs
1.000	Kilogram	2.205	lbs
	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	cubic feet
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
1.000	Therm	96.993	cubic feet
1.000	MMBTU (natural gas)	969.932	cubic feet
1.000	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	kWh
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

		-
	MCF>	\$0.00000100 per cubic foot
\$1.000	CCF>	\$0.01000000 per cubic foot
	MMBTU (gas)>	\$0.1000000 per therm
\$1.000	MWh>	\$0.00100000 per kWh
\$1.000	\$\$ / kW / month>	\$12.0000000 per kW / Year

Tips and Guidance:

- Type your Project's Energy Savings in Column F - Type your Location's Cost per Unit of Energy in Column L

You're done here! Go to the Project Tab!

Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year
Guidance: Input 75% or less of Load Differential as kW savings calculation.
If higher, you need to justify why you will save more.
e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW
Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)

Appendix E: Biak Training Center Life-Cycle Cost Analysis

LOCATION:	Biak Training Center - Brett l	REGION NO:	4		PROJECT NO .:	411300
PROJECT TITLE:	Renewable Energy - Biomass B	oiler			FY:	2014
ANALYSIS DATE:	11/29/12	ECONOMIC LIFE:	20 YE	ARS		
PREPARED BY:	Craig Volz	CHECKED BY:	Larry H	Iamburg		
#1 INVESTMENT	r costs:					
А	. CONSTRUCTION COSTS	\$ 350,000				
В	. SIOH	\$ 30,100	(Su	pervision + Inspection	n + Overhead)	
	. DESIGN COST	\$ 21,000	-			
	. TOTAL COST (1A+1B+1C)		\$	401,100		
	. SALVAGE VALUE OF EXISTIN		\$	-		
	. PUBLIC UTILITY COMPANY F		\$	218,314		
G	. TOTAL INVESTMENT (1D-1E-	1F)	\$	182,786		
	EMAND SAVINGS (+) / COSTS 2 85-3273-X USED FOR DISCOUNT FA			09/01/11	REGION #	4
	NALYSIS, MM = 1,000,000	10/10/13.	_	09/01/11	REGION #	-
ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/YR (#2)		ANNUAL \$ SAVINGS (#3) (#1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUI SAVINGS (#5) (#3 X #4)
A. ELEC. (Site)						
B. DIST. OIL						
C. RESID. OIL						
D. NAT. GAS						
E. PPG/LPG	\$ 20.33	677.7	\$	13,777	17.05	\$ 234,89
F. BIOMASS	\$ 9.30	(406.6)) \$	(3,782)	15.61	\$ (59,04
G. WATER DEMAND						
H. SAVINGS						
I. TOTAL		271.1	\$	9,995		\$ 175,85
#3 NON-ENERGY	Y SAVINGS (+) / COSTS (-)					
A. ANNUAL REC	URRING OM & R (+/-)	\$ 500				
1	DOE UPV DISCOUNT FACTOR	ł		14.88		
2	2 DISCOUNTED SAVINGS/COST	(3A X 3A1)			\$ 7,440	
B. NON-RECURR	ING SAVINGS (+) OR COSTS (-)	1				
ITEM a.	SVGS (+) COST (-) (#1)	YEAR OF OCCUR. (#2)		OE SPV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
b.	· · · · · · · · · · · · · · · · · · ·	·	_			
с.						
d. TOTAL						
C. TOTAL NON-E	ENERGY DISCOUNTED SAVING	S (3A2 + 3Bd4)			\$ 7,440	
#4 FIRST YEAR	DOLLAR SAVINGS (213 + 3A +	3Bd1/VRS ECON LIFE)			\$ 10,495	
	BACK IN YEARS (1G/#4)	obuli ind ECON LIFE)			\$ 10,495 17.4	
					1/14	
	DISCOUNTED SAVINGS (215 +	3C)			\$ 183,294	

A. CONST B. SIOH C. CONTII C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERGY	TITLE: DATE: MENT COSTS: RUCTION COST NGENCIES	11/2) STING EQU NY REBATE -1E-1F) ST (-):	9 <u>Energy - E</u> 19/12	Biomass Boiler ECON LIFE:					g Volz y Hamburg <u>350,000</u> 10,500 17,500 21,000 2,100
1. INVESTI A. CONST B. SIOH C. CONTII C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERG DATE OF N	MENT COSTS: RUCTION COST NGENCIES N ISSIONING COST (1A+1B+1C GE VALUE OF EXIS CUTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	11/2) STING EQU NY REBATE -1E-1F) ST (-):	JIPMENT			20	CHECKED BY: 3.0% 5.0% 6.0%	Larry \$ \$ \$ \$	V Hamburg 350,000 10,500 17,500 21,000 2,100
1. INVESTI A. CONST B. SIOH C. CONTII C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERG DATE OF N	MENT COSTS: RUCTION COST NGENCIES N ISSIONING COST (1A+1B+1C GE VALUE OF EXIS CUTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	STING EQU NY REBATE -1E-1F) ST (-):					CHECKED BY: 3.0% 5.0% 6.0%	Larry \$ \$ \$ \$	V Hamburg 350,000 10,500 17,500 21,000 2,100
A. CONST B. SIOH C. CONTII C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERG DATE OF N	RUCTION COST NGENCIES N ISSIONING COST (1A+1B+1C) GE VALUE OF EXIS CUTILITY COMPAN INVESTMENT (1D	STING EQU NY REBATE -1E-1F) ST (-):					5.0% 6.0%	\$ \$ \$	10,500 17,500 21,000 2,100
B. SIOH C. CONTII C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERGY DATE OF N	NGENCIES N ISSIONING COST (1A+1B+1C) GE VALUE OF EXIS UTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	STING EQU NY REBATE -1E-1F) ST (-):					5.0% 6.0%	\$ \$ \$	10,500 17,500 21,000 2,100
C. CONTIL C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERG DATE OF N	N ISSIONING COST (1A+1B+1C) GE VALUE OF EXIS UTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	STING EQU NY REBATE -1E-1F) ST (-):					5.0% 6.0%	\$ \$ \$	17,500 21,000 2,100
C. DESIGI C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL DATE OF N	N ISSIONING COST (1A+1B+1C) GE VALUE OF EXIS UTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	STING EQU NY REBATE -1E-1F) ST (-):					6.0%	\$ \$	21,000 2,100
C. COMM D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERGY DATE OF N	ISSIONING COST (1A+1B+1C) GE VALUE OF EXIS UTILITY COMPAN INVESTMENT (1D) (SAVINGS (+)/COS	STING EQU NY REBATE -1E-1F) ST (-):						\$	2,100
D. TOTAL E. SALVA F. PUBLIC G. TOTAL 2. ENERGY DATE OF N	COST (1A+1B+1C) GE VALUE OF EXIS UTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	STING EQU NY REBATE -1E-1F) ST (-):					0.6%		
E. SALVA F. PUBLIC G. TOTAL 2. ENERGY DATE OF N	GE VALUE OF EXIS CUTILITY COMPANINVESTMENT (1D	STING EQU NY REBATE -1E-1F) ST (-):						\$	
F. PUBLIC G. TOTAL 2. ENERGY DATE OF N	CUTILITY COMPAN INVESTMENT (1D Y SAVINGS (+)/COS	NY REBATE -1E-1F) ST (-):						Ψ	401,100
G. TOTAL	INVESTMENT (1D	-1E-1F) ST (-):						\$	-
2. ENERGY DATE OF N	Y SAVINGS (+)/CO	ST (-):						\$	218,314
DATE OF N								\$	182,786
DATE OF N									
	NISTR 85-3273-X U								
ENERGY		SEDFORE	DISCOUNT	FACTORS			09/01/11	Co	mmercial
			ST	SAVINGS	ΔN	INUAL\$	DISCOUNT	DIS	COUNTED
SOURCE			3TU(1)	MMBTU/YR(2)			FACTOR(4)	-	VINGS(5)
A. ELECT	RIC	\$	510(1)	0.0	\$	/11400(0)	14.11	\$	viiv00(0)
B. DISTILI		\$		0.0	\$		15.74	φ \$	
C. RESID		\$		0.0		-	21.74	φ \$	
D. NAT. G		\$		0.0	\$		15.64	φ \$	
E. PROPA		\$	20.329	677.7	φ \$	13,777	17.05	φ \$	234,897
	SS PELLETS	\$	9.302	(406.6)		(3,782)	15.61	\$	(59.043)
	SST LLLLIS		-gal	(400.0) k-gal	Ψ	(3,702)	10.01	Ψ	(33,043)
G. WATEF	२	\$	-	0.0	\$	-	16.65	\$	-
			V/YR	kW	¢		44.44	^	
I. TOTAL	ID SAVINGS	\$	-	0.0 271.1	\$ \$	- 9.995	14.11	\$ \$	- 175,854
I. TOTAL				271.1	φ	9,995		φ	170,004
3. NON-EN	ERGY SAVINGS (+		Г (-):						
A. ANNUAI	_ RECURRING (+/-))			\$	500			
(1) DISCOU	JNT FACTOR (TAB	BLE A-2)				14.88			
(2) DISCOU	JNTED SAVINGS (3A X 3A1)						\$	7,440
B. NON-RE	CURRING SAVING								
			IGS(+)	YEAR OF	-	SCOUNT	DISCOUNTED SAV-		
ITEM			- (-)(1)	OCCUR (2)	FAC	CTOR(3)	INGS/COST (+/-)(4)		
a.		\$	-			1.000			
b.						1.000			
		0				1.000			
d. TOTAL		\$	-				\$ -		
C TOTAL	NON-ENERGY DIS		SAVINGS/	COST (3A2 + 3	34d)			\$	7,440
5. 101/L			0,00,000		u)			Ψ	,,,,,
4. FIRST Y	EAR DOLLAR SAV	/INGS (213+	3A+3Bd1/		E):			\$	10,495
	PAYBACK (1G/4)		<u></u>		<u></u>			Ψ	17.4
	NET DISCOUNTED	SAVINGS	(2 5+3C)·					\$	183,294
	S TO INVESTMEN							Ψ	1.00

Category	Constant	Units			Input		MMTBUs		Input		\$/M[MTBU
Purchased Electric	3,412	BTU / I	kWh	Enter kWh>	0	П	0.0	Enter Cost / kWh>	\$ 0.0680	=	\$ 1	9.930
Purchased Steam	1,000	BTU / I	b	Enter Pounds>	0.00	Ш	0.00	Enter Cost / Ib>	\$ 0.0556	=	\$5	5.550
Distillate Fuel Oil	138,700	BTU / g	gal	Enter Gallons>	0.00	Ш	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$ 1	8.421
Natural Gas	1,031	BTU / (CuFt	Enter Cubic Feet>	0.00	П	0.00	Enter Cost / CuFt>	\$ 0.0056	=	\$	5.388
Natural Gas	100,000	BTU / T	Therm	Enter Therms>	0.00	=	0.00	Enter Cost / Therm>	\$ 0.5555	Π	\$	5.555
LPG, Propane	91,690	BTU / g	gal	Enter Gallons>	7,391.30	П	677.71	Enter Cost / Gal>	\$ 1.8639	=	\$ 2	0.329
Butane	102,032	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	Π	\$ 2	5.041
Bituminous Coal	24,580,000	BTU / s	short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 240.5500	Π	\$	9.786
Anthracite Coal	25,400,000	BTU / s	short Ton	Enter Tons>	0.00	Ш	0.00	Enter Cost / Ton>	\$ 241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	Π	\$3	9.679
#2 Fuel Oil	138,000	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	Π	\$4	0.254
Biomass Wood Pelle	17,200,000	BTU / t	ton	Enter Units>	(23.64)	=	(406.61)	Enter Cost / Unit>	\$ 160.0000	=	\$	9.302
Water (per 1000 gallo	one or other u	nit)		Enter 1000 Gallons>	0.00	r		Enter Cost / K-Gal	\$1,5666	1		
		init)							1			
Demand Savings				Enter kW>	0			Enter Cost / kW / Year>	\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
	English Ton	2,000.000	
	Metric Ton	2,204.623	lbs
	Kilogram	2.205	lbs
1.000	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	cubic feet
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
	Therm	96.993	cubic feet
	MMBTU (natural gas)	969.932	cubic feet
	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	kWh
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

	MCF>	\$0.00000100 per cubic foot
\$1.000	CCF>	\$0.01000000 per cubic foot
\$1.000	MMBTU (gas)>	\$0.1000000 per therm
\$1.000	MWh>	\$0.00100000 per kWh
\$1.000	\$\$ / kW / month>	\$12.0000000 per kW / Year

Tips and Guidance:

Type your Project's Energy Savings in Column F
Type your Location's Cost per Unit of Energy in Column L
You're done here! Go to the Project Tab!
Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year
Guidance: Input 75% or less of Load Differential as kW savings calculation.
If higher, you need to justify why you will save more.
e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW
Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)

Appendix F: Umatilla Sim Center Building #30 Life-Cycle Cost Analysis

PROJECT TITLE: R ANALYSIS DATE:	Jmatilla - Simulation Center] Renewable Energy - Biomass H 11/29/12	REGION NO:	4		DDO TOT NO	
ANALYSIS DATE: PREPARED BY: C					PROJECT NO.: 4	411300
PREPARED BY: C	11/29/12	eating System	—		FY:	
-		ECONOMIC LIFE:	20 YEARS		-	
#1 INVESTMENT C	Craig Volz	CHECKED BY:	Larry Hamb	ourg	-	
	COSTS:					
A. C	CONSTRUCTION COSTS	\$ 410,000				
B. S	SIOH	\$ 35,260	(Supervi	sion + Inspection	n + Overhead)	
C. E	DESIGN COST	\$ 24,600				
D. T	TOTAL COST (1A+1B+1C)		\$	469,860		
E. S	ALVAGE VALUE OF EXISTIN	IG EQUIPMENT	\$	-		
	UBLIC UTILITY COMPANY R		\$	198,038		
G. T	TOTAL INVESTMENT (1D-1E-1	IF)	\$	271,822		
	MAND SAVINGS (+) / COSTS 5-3273-X USED FOR DISCOUNT FA			09/01/11	REGION #	4
NOTE: IN THIS ANA	LYSIS, MM = 1,000,000					
ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/YR (#2)	SAV	NUAL \$ INGS (#3) #1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUE SAVINGS (#5) (#3 X #4)
A. ELEC. (Site)						
B. DIST. OIL						
C. RESID. OIL						
D. NAT. GAS						
E. PPG/LPG	\$ 20.83	1,225.2	\$	25,521	17.05	\$ 435,140
F. BIOMASS	\$ 9.30	(735.1)	\$	(6,838)	15.61	\$ (106,747
G. WATER						
DEMAND H. SAVINGS						
I. TOTAL		490.0	\$	18,683		\$ 328,393
#3 NON-ENERGY S	SAVINGS (+) / COSTS (-)					
A. ANNUAL RECU	RRING OM & R (+/-)	\$ 500				
	OOE UPV DISCOUNT FACTOR			14.88		
2 E	DISCOUNTED SAVINGS/COST	(3A X 3A1)			\$ 7,440	
B NON-RECURRIN	G SAVINGS (+) OR COSTS (-)					
ITEM	SVGS (+) COST (-) (#1)	YEAR OF OCCUR. (#2)	DOE S	PV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
a			·			
b						
d. TOTAL						
	ERGY DISCOUNTED SAVING	S (3A2 + 3Bd4)			\$ 7,440	
#4 FIDCT VEAD DC)LLAR SAVINGS (213 + 3A +	2D41/VDC ECON LIEE			¢ 10.193	
	ACK IN YEARS (1G/#4)	JDUI/ I KS ECON LIFE)			\$ 19,183 14.2	
	SCOUNTED SAVINGS (215 + -	3C)			\$ 335,833	
	VESTMENT RATIO (SIR) # 0				1.24	

ANAL A. CC B. SI C. CC C. DE C. CC D. TC E. SA F. PL G. TC 2. ENI DATE	ECT TITLE: YSIS DATE: /ESTMENT COSTS: ONSTRUCTION COST OH ONTINGENCIES ESIGN OMMISSIONING DTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS E OF NISTR 85-3273-X U	11.) STING EC NY REBAT -1E-1F) ST (-):	29/12 20/12	Biomass Heating ECON LIFE:	3 Sys	20	FISCAL YEAR: PREPARER: CHECKED BY: 3.0% 5.0% 6.0% 0.6%		4 g Volz y Hamburg 410,000 12,300 20,500 24,600 2,460
1. INV A. CC B. SI C. CC C. CC D. TC E. SA F. PL G. TC DATE	/ESTMENT COSTS: ONSTRUCTION COST OH ONTINGENCIES ESIGN OMMISSIONING OTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS JBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	11.) STING EC NY REBAT -1E-1F) ST (-):	29/12 20/12				CHECKED BY: 3.0% 5.0% 6.0%	Larry \$ \$ \$ \$	<mark>y Hamburg</mark> 410,000 12,300 20,500 24,600
1. INV A. CC B. SI C. CC C. CC D. TC E. SA F. PL G. TC DATE	/ESTMENT COSTS: ONSTRUCTION COST OH ONTINGENCIES ESIGN OMMISSIONING OTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS JBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):					3.0% 5.0% 6.0%	Larry \$ \$ \$ \$	V Hamburg 410,000 12,300 20,500 24,600
A. CC B. SI C. CC C. DE C. CC D. TC E. SA F. PL G. TC 2. ENI DATE	ONSTRUCTION COST OH ONTINGENCIES ESIGN OMMISSIONING OTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN OTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):					5.0% 6.0%	<mark>\$</mark> \$ \$ \$	410,000 12,300 20,500 24,600
A. CC B. SI C. CC C. DE C. CC D. TC E. SA F. PL G. TC 2. ENI DATE	ONSTRUCTION COST OH ONTINGENCIES ESIGN OMMISSIONING OTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN OTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):					5.0% 6.0%	\$ \$ \$ \$	12,300 20,500 24,600
 B. SII C. CC D. TC E. SA F. PL G. TC 2. ENI DATE 	OH ONTINGENCIES ESIGN OMMISSIONING OTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):					5.0% 6.0%	\$ \$ \$	12,300 20,500 24,600
C. DE C. CC D. TC E. SA F. PL G. TC <u>2. ENI</u> DATE	ESIGN OMMISSIONING DTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):					5.0% 6.0%	\$ \$ \$	20,500 24,600
C. CC D. TC E. SA F. PL G. TC <u>2. ENI</u> DATE	OMMISSIONING DTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):						\$	24,600
C. CC D. TC E. SA F. PL G. TC <u>2. ENI</u> DATE	OMMISSIONING DTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):						<u> </u>	
D. TC E. SA F. PU G. TC <u>2. ENI</u> DATE	OTAL COST (1A+1B+1C) ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN OTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):						\$	
E. SA F. PL G. TC <u>2. ENI</u> DATE	ALVAGE VALUE OF EXIS UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	STING EC NY REBAT -1E-1F) ST (-):							469,860
F. PU G. TC <u>2. ENI</u> DATE	UBLIC UTILITY COMPAN DTAL INVESTMENT (1D ERGY SAVINGS (+)/COS	NY REBAT -1E-1F) ST (-):						\$	-
<u>2. ENI</u> DATE	ERGY SAVINGS (+)/COS	<u></u>						\$	198,038
DATE								\$	271,822
DATE									
	: OF NISTR 85-3273-X U								
		SED FOR	DISCOUNT	FACTORS			09/01/11	Co	mmercial
FNFR	RGY	<u> </u>	OST	SAVINGS	ΔN	NUAL\$	DISCOUNT	פוס	COUNTED
SOUR			/BTU(1)	MMBTU/YR(2)			FACTOR(4)		VINGS(5)
	LECTRIC	\$	-	0.0	\$	-	14.11	\$	-
	ISTILLATE	\$		0.0	\$		15.74	\$	_
	ESIDUAL	\$		0.0			21.74	\$	_
	AT. GAS	\$		0.0			15.64	\$	
	ROPANE/LPG	\$	20.831	1,225.2	\$	25,521	17.05	\$	435,140
	OMASS PELLETS	\$	9.302	(735.1)	•	(6,838)	15.61	\$	(106,747)
			5/k-gal	k-gal	Ψ	(0,000)	10.01	Ψ	(100,147)
G. W	ATER	\$	-	0.0	\$	-	16.65	\$	-
	EMAND SAVINGS	\$	/kW/YR	kW 0.0	\$		14.11	\$	
	OTAL	φ	-	490.0	ֆ \$	- 18,683	14.11	φ \$	328,393
1. 10				430.0	ψ	10,005		φ	520,595
<u>3. NO</u>	N-ENERGY SAVINGS (+) OR COS	ST (-):						
	NUAL RECURRING (+/-)				\$	500			
	SCOUNT FACTOR (TAB					14.88			
(2) DI	SCOUNTED SAVINGS (3A X 3A1)						\$	7,440
			000T () (T						
B. NO	N-RECURRING SAVING								
			INGS(+)	YEAR OF		SCOUNT	DISCOUNTED SAV-		
ITEM			ST (-)(1)	OCCUR (2)	FAG		INGS/COST (+/-)(4)	——	
a.		\$	-			1.000			
b.						1.000 1.000			
C.	OTAL	\$	_			1.000	ъ - \$ -		
u. 10		φ	-				ψ -		
C. TO	TAL NON-ENERGY DIS		D SAVINGS/	COST (3A2 + 3I	B4d)			\$	7,440
					,				
<u>4. FIR</u>	ST YEAR DOLLAR SAV	/INGS (213		YRS ECON LIF	E):			\$	19,183
	IPLE PAYBACK (1G/4)							-	14.2
	TAL NET DISCOUNTED	SAVINGS	6 (2I5+3C):					\$	335,833
	VINGS TO INVESTMENT							Ŧ	1.24

Category	Constant	Units		Input		MMTBUs		Input		\$/N	имтви
Purchased Electric	3,412	BTU / kWh	Enter kWh>	0	=	0.0	Enter Cost / kWh>	\$ 0.0680	=	\$	19.930
Purchased Steam	1,000	BTU / Ib	Enter Pounds>	0.00	=	0.00	Enter Cost / Ib>	\$ 0.0556	=	\$	55.550
Distillate Fuel Oil	138,700	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$	18.421
Natural Gas	1,031	BTU / CuF	Enter Cubic Feet>	0.00	=	0.00	Enter Cost / CuFt>	\$ 0.0056	=	\$	5.388
Natural Gas	100,000	BTU / Ther	m Enter Therms>	0.00	=	0.00	Enter Cost / Therm>	\$ 0.5555	=	\$	5.555
LPG, Propane	91,690	BTU / gal	Enter Gallons>	13,362.00	=	1,225.16	Enter Cost / Gal>	\$ 1.9100	=	\$	20.831
Butane	102,032	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$	25.041
Bituminous Coal	24,580,000	BTU / shor	t Ton Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 240.5500	=	\$	9.786
Anthracite Coal	25,400,000	BTU / shor	t Ton Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	=	\$	39.679
#2 Fuel Oil	138,000	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	=	\$	40.254
Other (Define)	17,200,000	BTU / ton	Enter Units>	(42.74)	=	(735.13)	Enter Cost / Unit>	\$ 160.0000	=	\$	9.302
Water (per 1000 gallo	ons or other u	nit)	Enter 1000 Gallons>	0.00			Enter Cost / K-Gal	\$1.5666			
Demand Savings		•	Enter kW>	0			Enter Cost / kW / Year>	\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
1.000	English Ton	2,000.000	lbs
1.000	Metric Ton	2,204.623	lbs
	Kilogram	2.205	lbs
1.000	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	cubic feet
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
	Therm	96.993	cubic feet
1.000	MMBTU (natural gas)	969.932	cubic feet
1.000	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

\$1.000	MCF>	\$0.00000100	per cubic foot
+	CCF>	\$0.0100000	per cubic foot
\$1.000	MMBTU (gas)>	\$0.1000000	per therm
\$1.000	MWh>	\$0.00100000	per kWh
\$1.000	\$\$ / kW / month>	\$12.00000000	per kW / Year

Tips and Guidance:

- Type your Project's Energy Savings in Column F
- Type your Location's Cost per Unit of Energy in Column L

You're done here! Go to the Project Tab!

- Only write in light yellow cells. The light gray cells are auto-calculated.
- Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
- All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
- Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year

Guidance: Input 75% or less of Load Differential as kW savings calculation.

If higher, you need to justify why you will save more.

e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)

PRO	CATION:	Umatilla - Dining Bldg 36	REGION NO:	4		PROJECT NO.: 4	11300
)JECT TITLE:	Renewable Energy - Biomass H	Heating System			FY: 2	014
ANA	ALYSIS DATE:	11/29/12	ECONOMIC LIFE:	20	YEARS		
PRF	EPARED BY:	Craig Volz	CHECKED BY:	La	rry Hamburg		
#1	INVESTMENT	r costs:					
		. CONSTRUCTION COSTS	\$ 570,0				
		. SIOH	\$ 49,02	_	(Supervision + Inspectio	on + Overhead)	
		. DESIGN COST	\$ 34,2	00			
		. TOTAL COST (1A+1B+1C)			\$ 653,220		
		. SALVAGE VALUE OF EXISTI	-		\$ -		
		PUBLIC UTILITY COMPANY			\$ 273,518		
	G	. TOTAL INVESTMENT (1D-1E	-1F)		\$ 379,702		
#2		EMAND SAVINGS (+) / COSTS 85-3273-X USED FOR DISCOUNT F			09/01/11	REGION #	4
	NOTE: IN THIS A	NALYSIS, MM = 1,000,000					
	ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/Y (#2)	R	ANNUAL \$ SAVINGS (#3) (#1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUE SAVINGS (#5) (#3 X #4)
А	. ELEC. (Site)						
В	. DIST. OIL						
С	. RESID. OIL						
D	. NAT. GAS						
Е	. PPG/LPG	\$ 20.83	2,44	8.8	\$ 51,010	17.05	\$ 869,727
F	. BIOMASS	\$ 9.30	(1,469	.2)	\$ (13,667)	15.61	\$ (213,345
G	WATER						
н	DEMAND SAVINGS						
	L TOTAL			9.5	\$ 37,343		\$ 656,382
- 1					÷,.		+,
1	NON-ENERGY	Y SAVINGS (+) / COSTS (-)					
#3	. ANNUAL REC	URRING OM & R (+/-)	\$ 50	00			
#3		URRING OM & R (+/-) DOE UPV DISCOUNT FACTO		00	14.88		
#3	1		R	00	14.88	\$ 7,440	
#3 A	1	DOE UPV DISCOUNT FACTO	R T (3A X 3A1)	00	14.88		
#3 A	1	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS	R T (3A X 3A1)	00		DISCOUNTED	
#3 A	i 2 9. NON-RECURR	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS	R T (3A X 3A1)		14.88 DOE SPV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS	
#3 A	1	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS ING SAVINGS (+) OR COSTS (-	R T (3A X 3A1)		DOE SPV FACTOR	DISCOUNTED	
#3 A	i 2 9. NON-RECURR	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS ING SAVINGS (+) OR COSTS (-	R T (3A X 3A1)		DOE SPV FACTOR	DISCOUNTED SAVINGS/COSTS	
#3 A	I NON-RECURR ITEM	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS ING SAVINGS (+) OR COSTS (-	R T (3A X 3A1)		DOE SPV FACTOR	DISCOUNTED SAVINGS/COSTS	
#3 A B a b c	I NON-RECURR ITEM	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS ING SAVINGS (+) OR COSTS (-	R T (3A X 3A1)		DOE SPV FACTOR	DISCOUNTED SAVINGS/COSTS	
#3 A B a b c d	ITEM	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS ING SAVINGS (+) OR COSTS (-	R T (3A X 3A1)) YEAR OF OCCUR. (#		DOE SPV FACTOR	DISCOUNTED SAVINGS/COSTS	
#3 A B a b c c d	I NON-RECURR ITEM	DOE UPV DISCOUNT FACTO DISCOUNTED SAVINGS/COS ING SAVINGS (+) OR COSTS (- SVGS (+) COST (-) (#1)	R T (3A X 3A1)) YEAR OF OCCUR. (# 	2)	DOE SPV FACTOR	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	

TOTAL NET DISCOUNTED SAVINGS (215 + 3C)

SAVINGS TO INVESTMENT RATIO (SIR) # 6/(1G)]

#6

#7

Appendix G: Umatilla Dining Hall Building #36 Life-Cycle Cost Analysis

663,822 1.75

LO	CATION:	Umat	illa - Dining Bldg	REGION:		4	PROJECT NO:	4113	300
	OJECT TITLE:		wable Energy - E		I Sv		FISCAL YEAR:	2014	
	ALYSIS DATE:		11/29/12	ECON LIFE:		20	PREPARER:		g Volz
							CHECKED BY:		y Hamburg
1. I	NVESTMENT COSTS:								/
	CONSTRUCTION COST							\$	570,000
_	SIOH						3.0%	\$	17,100
	CONTINGENCIES						5.0%	\$	28,500
	DESIGN						6.0%	\$	34,200
	COMMISSIONING						0.6%	\$	3,420
	TOTAL COST (1A+1B+1C))						\$	653,220
	SALVAGE VALUE OF EXIS							\$	-
	PUBLIC UTILITY COMPAN							\$	273,518
	TOTAL INVESTMENT (1D							\$	379,702
			/					Ŧ	
2. E	ENERGY SAVINGS (+)/COS	ST (-):							
	TE OF NISTR 85-3273-X U			FACTORS			09/01/11	Co	mmercial
ΕN	ERGY		COST	SAVINGS	A	NNUAL\$	DISCOUNT	DIS	COUNTED
	URCE	9	S/MMBTU(1)	MMBTU/YR(2)			FACTOR(4)		VINGS(5)
	ELECTRIC	\$	-	0.0	\$	-	14.11	\$	-
_	DISTILLATE	\$	-	0.0	\$	-	15.74	\$	-
	RESIDUAL	\$	<u> </u>	0.0		-	21.74	\$	-
_	NAT. GAS	\$		0.0	\$	_	15.64	\$	_
	PROPANE/LPG	\$	20.831	2,448.8		51,010	17.05	\$	869,727
	BIOMASS PELLETS	\$	9.302	(1,469.2)		(13,667)	15.61	\$	(213,345)
• •		Ψ	\$/k-gal	k-gal	Ψ	(10,001)	10.01	Ψ	(210,010)
G.	WATER	\$	-	0.0	\$	-	16.65	\$	-
			\$/kW/YR	kW					
_	DEMAND SAVINGS	\$	-	0.0	\$	-	14.11	\$	-
Ι.	TOTAL			979.5	\$	37,343		\$	656,382
<u>3. N</u>	ION-ENERGY SAVINGS (+	<u>-) OR</u>	<u>COST (-):</u>						
					-				
	ANNUAL RECURRING (+/-)				\$	500			
• •	DISCOUNT FACTOR (TAB		,			14.88			
(2)	DISCOUNTED SAVINGS (3A X 3	3A1)					\$	7,440
B. I	NON-RECURRING SAVING								
			SAVINGS(+)	YEAR OF		SCOUNT			
ITE	M		COST (-)(1)	OCCUR (2)	FΑ		INGS/COST (+/-)(4)		
a.		\$	-			1.000		<u> </u>	
b.						1.000		<u> </u>	
С.	тоты	¢				1.000		<u> </u>	
a.	TOTAL	\$	-				\$ -		
<u> </u>					244C)		¢	7 4 4 0
U.	TOTAL NON-ENERGY DIS	COUN	ILED SAVINGS/	CUST (3A2 + 31	540)		\$	7,440
			(010 . 0.4. 0.7. 14.7		-\			¢	07.040
	IRST YEAR DOLLAR SAV	INGS	(213+3A+3Bd1/	THS ECON LIFE	<u>=):</u>			\$	37,843
	SIMPLE PAYBACK (1G/4)	0.01/2						¢	10.0
	OTAL NET DISCOUNTED							\$	663,822
<u>7.8</u>	SAVINGS TO INVESTMENT		10 (SIK) 6/1G:						1.75

Category	Constant	Units			Input		MMTBUs		Inp	ut		\$/N	/MTBU
Purchased Electric	3,412	BTU /	′ kWh	Enter kWh>	0	Π	0.0	Enter Cost / kWh>	\$	0.0680	Π	\$	19.930
Purchased Steam	1,000	BTU /	' lb	Enter Pounds>	0.00	Π	0.00	Enter Cost / Ib>	> \$	0.0556	Π	\$	55.550
Distillate Fuel Oil	138,700	BTU /	gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	2.5550	Π	\$	18.421
Natural Gas	1,031	BTU /	CuFt	Enter Cubic Feet>	0.00	Π	0.00	Enter Cost / CuFt>	\$	0.0056	Π	\$	5.388
Natural Gas	100,000	BTU /	Therm	Enter Therms>	0.00	Π	0.00	Enter Cost / Therm>	\$	0.5555	Π	\$	5.555
LPG, Propane	91,690	BTU /	gal	Enter Gallons>	26,707.00	Π	2,448.76	Enter Cost / Gal>	\$	1.9100	Π	\$	20.831
Butane	102,032	BTU /	gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	2.5550	Π	\$	25.041
Bituminous Coal	24,580,000	BTU /	short Ton	Enter Tons>	0.00	Π	0.00	Enter Cost / Ton>	\$	240.5500	Π	\$	9.786
Anthracite Coal	25,400,000	BTU /	short Ton	Enter Tons>	0.00	Π	0.00	Enter Cost / Ton>	\$	241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU /	' gal	Enter Gallons>	0.00	Ш	0.00	Enter Cost / Gal>	\$	5.5550	Π	\$	39.679
#2 Fuel Oil	138,000	BTU /	' gal	Enter Gallons>	0.00	Π	0.00	Enter Cost / Gal>	\$	5.5550	=	\$	40.254
Other (Define)	17,200,000	BTU /	' ton	Enter Units>	(85.42)	=	(1,469.22)	Enter Cost / Unit>	\$	160.0000	=	\$	9.302
Water (per 1000 gallo	ons or other u	nit)		Enter 1000 Gallons>	0.00			Enter Cost / K-Gal		\$1.5666			
Demand Savings				Enter kW>	0			Enter Cost / kW / Year>		\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
1.000	English Ton	2,000.000	lbs
1.000	Metric Ton	2,204.623	lbs
1.000	Kilogram	2.205	lbs
	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	cubic feet
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
1.000	Therm	96.993	cubic feet
1.000	MMBTU (natural gas)	969.932	cubic feet
1.000	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	kWh
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

\$1.000	MCF>	\$0.00000100 per cubic foot
	CCF>	\$0.01000000 per cubic foot
\$1.000	MMBTU (gas)>	\$0.1000000 per therm
	MWh>	\$0.00100000 per kWh
\$1.000	\$\$ / kW / month>	\$12.00000000 per kW / Year

Tips and Guidance:

Type your Project's Energy Savings in Column F
Type your Location's Cost per Unit of Energy in Column L
You're done here! Go to the Project Tab!
Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year
Guidance: Input 75% or less of Load Differential as kW savings calculation.
If higher, you need to justify why you will save more.
e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW
Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)

Appendix H: Umatilla Barracks Building #53 Life-Cycle Cost Analysis

LOCATION:	Umatilla - Billeting Bldg # 53	REGION NO:	4	PROJECT NO.:	411300
PROJECT TITLE:	Renewable Energy - Biomass			FY:	2014
ANALYSIS DATE:	11/29/12	ECONOMIC LIFE:	20 YEARS	_	
PREPARED BY:	Craig Volz	CHECKED BY:	Larry Hamburg		
#1 INVESTMENT	r costs:				
А	. CONSTRUCTION COSTS	\$ 240,000			
В	. SIOH	\$ 20,640	(Supervision + Inspecti	on + Overhead)	
С	. DESIGN COST	\$ 14,400			
D	. TOTAL COST (1A+1B+1C)		\$ 275,040		
E	. SALVAGE VALUE OF EXIST	NG EQUIPMENT	\$ -		
F	. PUBLIC UTILITY COMPANY	REBATE	\$ 123,470		
G	. TOTAL INVESTMENT (1D-1E	-1F)	\$ 151,570		
#2 ENERGY & D	EMAND SAVINGS (+) / COST	5 (-)			
DATE OF NISTIF	85-3273-X USED FOR DISCOUNT F	ACTORS:	09/01/11	REGION #	4
NOTE: IN THIS A	NALYSIS, MM = 1,000,000				_
ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/YR (#2)	ANNUAL \$ SAVINGS (#3) (#1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUI SAVINGS (#5) (#3 X #4)
A. ELEC. (Site)					
B. DIST. OIL					
C. RESID. OIL				·	
D. NAT. GAS					
E. PPG/LPG	\$ 20.83	576.	2 \$ 12,002	17.05	\$ 204,64
F. BIOMASS	\$ 9.30	(345.7) \$ (3,216)	15.61	\$ (50,20
G. WATER					
DEMAND					
H. SAVINGS					
I. TOTAL		230.	5 \$ 8,786		\$ 154,44
#3 NON-ENERG	Y SAVINGS (+) / COSTS (-)				
A. ANNUAL REC	URRING OM & R (+/-)	\$ 500	<u>.</u>		
1	DOE UPV DISCOUNT FACTO	R	14.88		
2	2 DISCOUNTED SAVINGS/COS	T (3A X 3A1)		\$ 7,440	
B. NON-RECURE	ING SAVINGS (+) OR COSTS (-)			
ITEM	SVGS (+) COST (-) (#1)	YEAR OF OCCUR. (#2)	DOE SPV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
a. b.					
с.					
d. TOTAL	-		_		
	ENERGY DISCOUNTED SAVIN	GS (3A2 + 3Bd4)		\$ 7,440	
#4 FIRST YEAR	DOLLAR SAVINGS (213 + 3A -	+ 3Bd1/YRS ECON LIFE)		\$ 9,286	
	BACK IN YEARS (1G/#4)			÷ 5,200 16.3	
				100	
	DISCOUNTED SAVINGS (215 +	+ 3C)		\$ 161,880	

LO	CATION:	Umat	tilla - Billeting Bld	REGION:		4	PROJECT NO:	411	300
	OJECT TITLE:		wable Energy - E		svs	stem	FISCAL YEAR:	2014	1
	ALYSIS DATE:		11/29/12	ECON LIFE:	<u>, - , -</u>	20	PREPARER:	-	g Volz
							CHECKED BY:	_	y Hamburg
1.1	NVESTMENT COSTS:								,a
	CONSTRUCTION COST							\$	240,000
	SIOH						3.0%	\$	7,200
	CONTINGENCIES						5.0%	\$	12,000
	DESIGN						6.0%	\$	14,400
	COMMISSIONING						0.6%	\$	1,440
	TOTAL COST (1A+1B+1C)						\$	275,040
	SALVAGE VALUE OF EXI							\$	210,010
	PUBLIC UTILITY COMPAN							\$	123,470
	TOTAL INVESTMENT (1D							φ \$	151,570
	、		,						,
2. E	ENERGY SAVINGS (+)/CO	ST (-):							
	TE OF NISTR 85-3273-X U			FACTORS			09/01/11	Сс	mmercial
	ERGY		COST	SAVINGS		NUAL\$	DISCOUNT		COUNTED
	URCE	-	S/MMBTU(1)	MMBTU/YR(2)		VINGS(3)	FACTOR(4)		VINGS(5)
	ELECTRIC	\$	-	0.0	\$	-	14.11	\$	-
	DISTILLATE	\$	-	0.0	\$	-	15.74	\$	-
	RESIDUAL	\$	-	0.0	\$	-	21.74	\$	-
	NAT. GAS	\$	-	0.0	\$	-	15.64	\$	-
	PROPANE/LPG	\$	20.831	576.2	\$	12,002	17.05	\$	204,642
F.	BIOMASS PELLETS	\$	9.302	(345.7)	\$	(3,216)	15.61	\$	(50,202)
-		•	\$/k-gal	k-gal	•				
G.	WATER	\$	-	0.0	\$	-	16.65	\$	-
Н.	DEMAND SAVINGS	\$	\$/kW/YR _	kW 0.0	\$	_	14.11	\$	-
	TOTAL	+		230.5	\$	8,786		\$	154,440
					Ŧ	-,		Ŧ	,
<u>3. N</u>	NON-ENERGY SAVINGS (-	+) OR	<u>COST (-):</u>						
•		<u> </u>			•	= 0.0			
	ANNUAL RECURRING (+/-		0)		\$	500			
• •	DISCOUNT FACTOR (TAE		,			14.88			
(2)	DISCOUNTED SAVINGS (3A X 3	3A1)					\$	7,440
R	NON-RECURRING SAVING	28 (+)		$\Delta RI = \Delta_{-1}$					
5.1			SAVINGS(+)	YEAR OF	פוס	SCOUNT	DISCOUNTED SAV-		
ITE	M		COST (-)(1)	OCCUR (2)			INGS/COST (+/-)(4)		
	.1V1	\$		55551(2)	I A	1.000			
_									
a.		Ŧ							
a. b.		· ·				1.000			
a. b. c.	TOTAL					1.000	\$-		
a. b. c.	TOTAL	\$	-				\$-		
a. b. c. d.	TOTAL TOTAL NON-ENERGY DIS	\$		COST (3A2 + 3	34d)	1.000	\$-	\$	7,440
a. b. c. d.		\$		COST (3A2 + 3	34d)	1.000	\$-	\$	7,440
a. b. c. d. C.		\$ COUN	ITED SAVINGS/			1.000	\$-	\$	7,440 9,286
a. b. d. C.	TOTAL NON-ENERGY DIS	\$ COUN	ITED SAVINGS/			1.000	\$-		
a. b. d. C. <u>4.</u> <u>5.</u> <u>6.</u>	TOTAL NON-ENERGY DIS FIRST YEAR DOLLAR SAV	\$ COUN /INGS	ITED SAVINGS/ (213+3A+3Bd1/ NGS (215+3C):			1.000	\$-		9,286

Category	Constant	Units		Input	MMTBUs		Input		\$/M	MTBU
Purchased Electric	3,412	BTU / kWh	Enter kWh>	• 0	= 0.0	Enter Cost / kWh>	\$ 0.0680	Ш	\$ 1	19.930
Purchased Steam	1,000	BTU / Ib	Enter Pounds>	0.00	= 0.00	Enter Cost / Ib>	\$ 0.0556	=	\$ 5	55.550
Distillate Fuel Oil	138,700	BTU / gal	Enter Gallons>	0.00	= 0.00	Enter Cost / Gal>	\$ 2.5550	=	\$ 1	18.421
Natural Gas	1,031	BTU / CuFt	Enter Cubic Feet>	0.00	= 0.00	Enter Cost / CuFt>	\$ 0.0056	=	\$	5.388
Natural Gas	100,000	BTU / Therm	Enter Therms>	0.00	= 0.00	Enter Cost / Therm>	\$ 0.5555	=	\$	5.555
LPG, Propane	91,690	BTU / gal	Enter Gallons>	6,284.00	= 576.18	Enter Cost / Gal>	\$ 1.9100	Ш	\$ 2	20.831
Butane	102,032	BTU / gal	Enter Gallons>	0.00	= 0.00	Enter Cost / Gal>	\$ 2.5550	=	\$ 2	25.041
Bituminous Coal	24,580,000	BTU / short 7	on Enter Tons>	0.00	= 0.00	Enter Cost / Ton>	\$ 240.5500	Ш	\$	9.786
Anthracite Coal	25,400,000	BTU / short 7	on Enter Tons>	0.00	= 0.00	Enter Cost / Ton>	\$ 241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU / gal	Enter Gallons>	0.00	= 0.00	Enter Cost / Gal>	\$ 5.5550	=	\$ 3	39.679
#2 Fuel Oil	138,000	BTU / gal	Enter Gallons>	0.00	= 0.00	Enter Cost / Gal>	\$ 5.5550	=	\$4	40.254
Other (Define)	17,200,000	BTU / ton	Enter Units>	(20.10)	= (345.72)	Enter Cost / Unit>	\$ 160.0000	=	\$	9.302
Water (per 1000 galle	ons or other u	nit)	Enter 1000 Gallons>	0.00		Enter Cost / K-Gal	\$1.5666	1		
Demand Savings		•	Enter kW>	0		Enter Cost / kW / Year>	\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000 MWh>	1,000.000 kWh
1.000 English Ton	2,000.000 lbs
1.000 Metric Ton	2,204.623 lbs
1.000 Kilogram	2.205 lbs
1.000 CCF (natural gas)	100.000 cubic feet
1.000 MCF (natural gas)	1,000.000 cubic feet
1.000 MMCF (nat gas)	1,000,000.000 cubic feet
1.000 Therm	96.993 cubic feet
1.000 MMBTU (natural gas)	969.932 cubic feet
1.000 MMBTU (natural gas)	10.000 therms
1.000 MMBTU (electric)	293.083 kWh
1.000 Acre	43,560.000 square feet

Financial Conversions for Reference

\$1.000	MCF>	\$0.00000100	per cubic foot
	CCF>	\$0.0100000	per cubic foot
\$1.000	MMBTU (gas)>	\$0.1000000	per therm
\$1.000	MWh>	\$0.00100000	
\$1.000	\$\$ / kW / month>	\$12.00000000	per kW / Year

Tips and Guidance:

Type your Project's Energy Savings in Column F
Type your Location's Cost per Unit of Energy in Column L
You're done here! Go to the Project Tab!
Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year

Guidance: Input 75% or less of Load Differential as kW savings calculation. If higher, you need to justify why you will save more. e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW

Reasonable Demand Charge Savings Estimate ($60 \times 0.75 = 45 \text{ kW}$)

Appendix I: Youth Challenge Facility Life-Cycle Cost Analysis

LOCATION:	FORT OREGON	REGION NO:	4		PROJECT NO.:	411300
PROJECT TITLE:	Renewable Energy - Biomass	s Heating Systems			FY:	2014
ANALYSIS DATE:	11/29/12	ECONOMIC LIFE:	20 YEAR	S		
PREPARED BY:	Craig Volz	CHECKED BY:	Larry Ham	burg		
#1 INVESTMENT	COSTS:					
	. CONSTRUCTION COSTS	\$ 655,000	-			
	. SIOH	\$ 56,330		vision + Inspectio	n + Overhead)	
	DESIGN COST	\$ 39,300	-	55 0 (30		
	. TOTAL COST (1A+1B+1C)		\$	750,630		
	. SALVAGE VALUE OF EXIS		\$	463,646		
	. PUBLIC UTILITY COMPAN . TOTAL INVESTMENT (1D-1		\$	286,984		
0	. TOTAL INVESTMENT (ID-I	L-11)	φ	200,904		
	EMAND SAVINGS (+) / COS' 85-3273-X USED FOR DISCOUNT			09/01/11	REGION #	4
NOTE: IN THIS A	NALYSIS, MM = 1,000,000					-
ENERGY SOURCE	COST \$/MMBTU (#1)	SAVINGS MMBTU/YR (#2)	SA	NNUAL \$ VINGS (#3) (#1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUE SAVINGS (#5) (#3 X #4)
A. ELEC. (Site)						
B. DIST. OIL						
C. RESID. OIL						
D. NAT. GAS						
E. PPG/LPG	\$ 19.25	2,577.6		49,617	17.05	\$ 845,96
F. BIOMASS	\$ 9.30	(1,546.5)) \$	(14,386)	15.61	\$ (224,55
G. WATER DEMAND			-			
H. SAVINGS						
I. TOTAL		1,031.1	\$	35,231		\$ 621,41
#3 NON-ENERGY	Y SAVINGS (+) / COSTS (-)					
A. ANNUAL REC	URRING OM & R (+/-)	\$ 500	_			
1	DOE UPV DISCOUNT FACT	OR		14.88		
2	2 DISCOUNTED SAVINGS/CC	OST (3A X 3A1)			\$ 7,440	
B. NON-RECURR	ING SAVINGS (+) OR COSTS	(-)				
ITEM	SVGS (+) COST (-) (#1)	YEAR OF OCCUR. (#2)	DOE	SPV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
a			-			
b		-	-			
c. d. TOTAL		_				
	ENERGY DISCOUNTED SAVI	NGS (3A2 + 3Bd4)			\$ 7,440	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
#4 FIRST YEAR	DOLLAR SAVINGS (213 + 3A	+ 3Bd1/YRS ECON LIFE)			\$ 35,731	
#4 TIKOT TEAK						
	BACK IN YEARS (1G/#4)				8.0 \$ 628,850	

LO	CATION:	FORT C	REGON	REGION:		4	PROJECT NO:	4113	300
	OJECT TITLE:			Biomass Heating	a Sve	stems	FISCAL YEAR:	2014	
	ALYSIS DATE:		1/29/12	ECON LIFE:	<u> </u>	20	PREPARER:		g Volz
			-				CHECKED BY:		/ Hamburg
1. I	NVESTMENT COSTS:								¥
Α.	CONSTRUCTION COST							\$	655,000
В.	SIOH						3.0%	\$	19,650
C.	CONTINGENCIES						5.0%	\$	32,750
C.	DESIGN						6.0%	\$	39,300
C.	COMMISSIONING						0.6%	\$	3,930
D.	TOTAL COST (1A+1B+1C))						\$	750,630
Ε.	SALVAGE VALUE OF EXIS	STING E	QUIPMENT					\$	-
F.	PUBLIC UTILITY COMPAN	NY REBA	TE					\$	463,646
G.	TOTAL INVESTMENT (1D	-1E-1F)						\$	286,984
<u> </u>									
	ENERGY SAVINGS (+)/CO						00/04/44	0-	mmoreiel
DA	TE OF NISTR 85-3273-X U	SEDFO	R DISCOUNT	FACTORS			09/01/11	Co	mmercial
FN	ERGY		COST	SAVINGS	A١	NUAL\$	DISCOUNT	DIS	COUNTED
	URCE		IMBTU(1)	MMBTU/YR(2)			FACTOR(4)		VINGS(5)
	ELECTRIC	\$	-	0.0	\$	-	14.11	\$	-
	DISTILLATE	\$		0.0	\$	_	15.74	\$	-
	RESIDUAL	\$	_	0.0		_	21.74	\$	_
	NAT. GAS	\$	-	0.0		_	15.64	\$	-
	PROPANE/LPG	\$	19.250	2,577.6	\$	49,617	17.05	\$	845,969
	BIOMASS PELLETS	\$	9.302	(1,546.5)		(14,386)	15.61	\$	(224,559)
		•	\$/k-gal	k-gal		(**,)			(,)
G.	WATER	\$	-	0.0	\$	-	16.65	\$	-
н	DEMAND SAVINGS	\$	\$/kW/YR _	kW 0.0	\$		14.11	\$	
	TOTAL	Ψ		1,031.1	Ψ \$	35,231	17.11	Ψ \$	621,410
1.				1,001.1	Ψ	55,251		Ψ	021,410
<u>3. I</u>	NON-ENERGY SAVINGS (+	-) OR CO	DST (-):						
	ANNUAL RECURRING (+/-)				\$	500			
• •	DISCOUNT FACTOR (TAB	,				14.88			
(2)	DISCOUNTED SAVINGS (3A X 3A′	1)					\$	7,440
DI	NON-RECURRING SAVING								
D. I	NON-RECORKING SAVING		VINGS(+)	YEAR OF	פוס		DISCOUNTED SAV-		
ITE	ΓΛ.	-	. ,	OCCUR (2)					
a.	.1V1	\$)ST (-)(1) 	0000K (2)	TA	1.000	INGS/COST (+/-)(4)		
a. b.		Ψ				1.000			
D. C.						1.000			
-	TOTAL	\$	_			1.000	\$ -		
C. '	TOTAL NON-ENERGY DIS	COUNTE	ED SAVINGS/	COST (3A2 + 3	B4d)			\$	7,440
-			:						
	IRST YEAR DOLLAR SAV	INGS (2	<u> 3+3A+3Bd1/</u>	RS ECON LIF	<u>E):</u>			\$	35,731
	SIMPLE PAYBACK (1G/4)								8.0
	OTAL NET DISCOUNTED							\$	628,850
<u>/. </u>	SAVINGS TO INVESTMENT	i katio	(SIR) 6/1G:						2.19

Category	Constant	Units		Input	M	MTBUs		Input		\$/M	МТВО
Purchased Electric	3,412	BTU / kWh	Enter kWh>	0	=	0.0	Enter Cost / kWh>	\$ 0.0680	=	\$ 1	9.930
Purchased Steam	1,000	BTU / Ib	Enter Pounds>	0.00	=	0.00	Enter Cost / Ib>	\$ 0.0556	Π	\$ 5	5.550
Distillate Fuel Oil	138,700	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$ 1	8.421
Natural Gas	1,031	BTU / CuFt	Enter Cubic Feet>	0.00	=	0.00	Enter Cost / CuFt>	\$ 0.0056	=	\$	5.388
Natural Gas	100,000	BTU / Therm	Enter Therms>	0.00	=	0.00	Enter Cost / Therm>	\$ 0.5555	=	\$	5.555
LPG, Propane	91,690	BTU / gal	Enter Gallons>	28,111.60	=	2,577.55	Enter Cost / Gal>	\$ 1.7650	=	\$ 1	9.250
Butane	102,032	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 2.5550	=	\$ 2	25.041
Bituminous Coal	24,580,000	BTU / short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 240.5500	=	\$	9.786
Anthracite Coal	25,400,000	BTU / short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$ 241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	=	\$ 3	39.679
#2 Fuel Oil	138,000	BTU / gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$ 5.5550	=	\$4	0.254
Other (Define)	17,200,000	BTU / ton	Enter Units>	(89.91)	=	(1,546.45)	Enter Cost / Unit>	\$ 160.0000	=	\$	9.302
Water (per 1000 galle	ons or other u	nit)	Enter 1000 Gallons>	0.00			Enter Cost / K-Gal	\$1.5666			
Demand Savings			Enter kW>	0			Enter Cost / kW / Year>	\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
	English Ton	2,000.000	lbs
1.000	Metric Ton	2,204.623	lbs
1.000	Kilogram	2.205	lbs
	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
1.000	Therm	96.993	cubic feet
1.000	MMBTU (natural gas)	969.932	cubic feet
1.000	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	kWh
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

\$1.000	MCF>	\$0.00000100 per cubic foot
\$1.000	CCF>	\$0.01000000 per cubic foot
\$1.000	MMBTU (gas)>	\$0.1000000 per therm
\$1.000	MWh>	\$0.00100000 per kWh
\$1.000	\$\$ / kW / month>	\$12.00000000 per kW / Year

Tips and Guidance:

- Type your Project's Energy Savings in Column F

- Type your Location's Cost per Unit of Energy in Column L

You're done here! Go to the Project Tab!

Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year
Guidance: Input 75% or less of Load Differential as kW savings calculation.
If higher, you need to justify why you will save more.
e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW
Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)

Appendix J: Burns Armory Life-Cycle Cost Analysis

LOCATION:	Burns Armory	REGION NO:	4		PROJECT NO.:	411300
PROJECT TITLE:	Renewable Energy - Bioma	ss Heating System			FY:	2014
ANALYSIS DATE:	11/29/12	ECONOMIC LIFE:	20 YEARS			
PREPARED BY:	Craig Volz	CHECKED BY:	Larry Hamb	ourg	-	
#1 INVESTMEN	T COSTS:					
P	. CONSTRUCTION COSTS	\$ 320,000				
I	S. SIOH	\$ 27,520	(Supervi	sion + Inspection	+ Overhead)	
(. DESIGN COST	\$ 19,200	-			
Ι	. TOTAL COST (1A+1B+1C)		\$	366,720		
	E. SALVAGE VALUE OF EXI		\$	-		
	5. PUBLIC UTILITY COMPA		\$	204,143		
	. TOTAL INVESTMENT (1D		\$	162,577		
		,		,		
	EMAND SAVINGS (+) / CO			00/01/11	DECION //	
	R 85-3273-X USED FOR DISCOUI	NT FACTORS:		09/01/11	REGION #	4
NOTE: IN THIS	ANALYSIS, MM = 1,000,000					
ENERGY SOURCE	COST \$/MMBTU (#1	SAVINGS MMBTU/YR (#2)	SAV	INUAL \$ INGS (#3) #1 X #2)	FEMP UPV DISCOUNT FACTOR (#4)	PRESENT VALUE SAVINGS (#5) (#3 X #4)
A. ELEC. (Site)						
B. DIST. OIL						
C. RESID. OIL			-			
D. NAT. GAS			-			
E. PPG/LPG	\$ 19.2	2 715.	8 \$	13,758	17.05	\$ 234,57
F. BIOMASS	\$ 9.3		-	(3,995)	15.61	\$ (62,36
G. WATER			<u> </u>			
DEMAND			-			
H. SAVINGS						
I. TOTAL		286.	3 \$	9,763		\$ 172,21
#3 NON-ENERG	Y SAVINGS (+) / COSTS (-)					
A. ANNUAL REC	CURRING OM & R (+/-)	\$ 500				
	1 DOE UPV DISCOUNT FAC	TOR		14.88		
	2 DISCOUNTED SAVINGS/C	COST (3A X 3A1)			\$ 7,440	
B NON-RECUR	RING SAVINGS (+) OR COST	·S (-)				
ITEM	SVGS (+) COST (-) (#1			PV FACTOR (#3)	DISCOUNTED SAVINGS/COSTS [+/-] (#4)	
a.					L · J (* 7	
b.						
c.						
d. TOTAL						
C TOTAL NON	ENERGY DISCOUNTED SAV	/INGS (3A2 + 3Bd4)			\$ 7,440	
C. TOTAL NON-		3A + 3Bd1/YRS ECON LIFE)			\$ 10,263	
	DOLLAR SAVINGS (213 + 3					
#4 FIRST YEAR	DOLLAR SAVINGS (213 + 3 BACK IN YEARS (1G/#4)				15.8	
#4 FIRST YEAR #5 SIMPLE PAY					15.8 \$ 179,654	

LO	CATION:	Burns A	rmory	REGION:		4	PROJECT NO:	4113	300
	OJECT TITLE:			Biomass Heating	I Svs	stem	FISCAL YEAR:	2014	
	ALYSIS DATE:		1/29/12	ECON LIFE:		20	PREPARER:		g Volz
							CHECKED BY:		Hamburg
1. I	NVESTMENT COSTS:								Ŭ
Α.	CONSTRUCTION COST							\$	320,000
В.	SIOH						3.0%	\$	9,600
C.	CONTINGENCIES						5.0%	\$	16,000
C.	DESIGN						6.0%	\$	19,200
C.	COMMISSIONING						0.6%	\$	1,920
	TOTAL COST (1A+1B+1C							\$	366,720
Ε.	SALVAGE VALUE OF EXI	STING E	QUIPMENT					\$	-
F.	PUBLIC UTILITY COMPAN	VY REBA	ATE					\$	204,143
G.	TOTAL INVESTMENT (1D	-1E-1F)						\$	162,577
0 1		PT ().							
	ENERGY SAVINGS (+)/CO TE OF NISTR 85-3273-X U			EACTORS			00/01/11	<u> </u>	mmoroial
DA	1 E UF NISTR 85-32/3-X U			FACIURS			09/01/11		mmercial
	ERGY		COST	SAVINGS	٨٨	NUAL\$	DISCOUNT	פוח	COUNTED
	URCE		IMBTU(1)	MMBTU/YR(2)			FACTOR(4)		VINGS(5)
	ELECTRIC	\$		0.0	\$	viivG3(3)	14.11	\$ \$	viiu03(3)
	DISTILLATE	э \$	-	0.0	ֆ \$	-	15.74	ֆ \$	-
	RESIDUAL	\$	-	0.0	φ \$	-	21.74	φ \$	-
	NAT. GAS	\$	-	0.0	φ \$	-	15.64	φ \$	-
	PROPANE/LPG	\$	- 19.220	715.8	φ \$	13,758	17.05	φ \$	234,579
	BIOMASS PELLETS	\$	9.302	(429.5)		(3,995)	15.61	φ \$	(62,365)
г.	BIOWA33 FELLETS	φ	\$/k-gal	(429.3) k-gal	φ	(3,995)	15.01	φ	(02,303)
G.	WATER	\$	- -	0.0	\$	-	16.65	\$	-
н	DEMAND SAVINGS	\$	\$/kW/YR _	kW 0.0	\$		14.11	\$	
	TOTAL	Ψ		286.3	Ψ \$	9,763	14.11	φ \$	172,214
1.				200.5	ψ	9,705		Ψ	172,214
<u>3. I</u>	NON-ENERGY SAVINGS (+	+) OR C(<u> DST (-):</u>						
٨	ANNUAL RECURRING (+/-`	\			\$	500			
	DISCOUNT FACTOR (TAB				φ	14.88			
• •	DISCOUNTED SAVINGS (,	1)			14.00		\$	7,440
(-)			')					Ψ	7,110
B. I	NON-RECURRING SAVING								
			VINGS(+)				DISCOUNTED SAV-		
ITE	M		DST (-)(1)	OCCUR (2)	FA		INGS/COST (+/-)(4)		
a.		\$	-			1.000			
b.						1.000		<u> </u>	
C.	TOTAL	•				1.000		<u> </u>	
d.	TOTAL	\$	-				\$ -		
C. '	TOTAL NON-ENERGY DIS	COUNT	ED SAVINGS/	COST (3A2 + 3	34d)			\$	7,440
					-\.			¢	40.000
	FIRST YEAR DOLLAR SAV	VINGS (2	13+3A+3Bd1/	THS ECON LIF	<u>=):</u>			\$	10,263
	SIMPLE PAYBACK (1G/4)							.	15.8
	TOTAL NET DISCOUNTED							\$	179,654
<u>7. </u>	SAVINGS TO INVESTMEN	I KATIO	(SIR) 6/1G:						1.11

Category	Constant	Units			Input		MMTBUs		Inp	ut		\$/N	IMTBU
Purchased Electric	3,412	BTU / k	‹ Wh	Enter kWh>	0	Π	0.0	Enter Cost / kWh>	\$	0.0680	=	\$	19.930
Purchased Steam	1,000	BTU / II	b	Enter Pounds>	0.00	Π	0.00	Enter Cost / Ib>	> \$	0.0556	=	\$	55.550
Distillate Fuel Oil	138,700	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$	2.5550	=	\$	18.421
Natural Gas	1,031	BTU / C	CuFt	Enter Cubic Feet>	0.00	=	0.00	Enter Cost / CuFt>	\$	0.0056	=	\$	5.388
Natural Gas	100,000	BTU / T	Therm	Enter Therms>	0.00	=	0.00	Enter Cost / Therm>	\$	0.5555	=	\$	5.555
LPG, Propane	91,690	BTU / g	gal	Enter Gallons>	7,807.00	=	715.82	Enter Cost / Gal>	\$	1.7623	=	\$	19.220
Butane	102,032	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$	2.5550	=	\$	25.041
Bituminous Coal	24,580,000	BTU / s	short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$	240.5500	=	\$	9.786
Anthracite Coal	25,400,000	BTU / s	short Ton	Enter Tons>	0.00	=	0.00	Enter Cost / Ton>	\$	241.6000	=	\$	9.512
Residual #1 Fuel Oil	140,000	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$	5.5550	=	\$	39.679
#2 Fuel Oil	138,000	BTU / g	gal	Enter Gallons>	0.00	=	0.00	Enter Cost / Gal>	\$	5.5550	=	\$	40.254
Other (Define)	17,200,000	BTU / te	on	Enter Units>	(24.97)	=	(429.48)	Enter Cost / Unit>	\$	160.0000	=	\$	9.302
Water (per 1000 galle	ons or other u	nit)		Enter 1000 Gallons>	0.00			Enter Cost / K-Gal		\$1.5666			
Demand Savings				Enter kW>	0			Enter Cost / kW / Year>		\$0.00			

* Conversions from USACE DD1391 Validation Program Checklist, Feb 2011

Calculator: Unit Conversions for Reference

1.000	MWh>	1,000.000	kWh
1.000	English Ton	2,000.000	lbs
1.000	Metric Ton	2,204.623	lbs
1.000	Kilogram	2.205	lbs
	CCF (natural gas)	100.000	cubic feet
	MCF (natural gas)	1,000.000	cubic feet
1.000	MMCF (nat gas)	1,000,000.000	cubic feet
1.000	Therm	96.993	cubic feet
1.000	MMBTU (natural gas)	969.932	cubic feet
	MMBTU (natural gas)	10.000	therms
1.000	MMBTU (electric)	293.083	kWh
1.000	Acre	43,560.000	square feet

Financial Conversions for Reference

\$1.000	MCF>	\$0.00000100	per cubic foot	
\$1.000	CCF>	\$0.01000000	per cubic foot	
\$1.000	MMBTU (gas)>	\$0.1000000	per therm	
\$1.000	MWh>	\$0.00100000	per kWh	
\$1.000	\$\$ / kW / month>	\$12.0000000	per kW / Year	

Tips and Guidance:

- Type your Project's Energy Savings in Column F

- Type your Location's Cost per Unit of Energy in Column L

You're done here! Go to the Project Tab!

Only write in light yellow cells. The light gray cells are auto-calculated.
Input 4 significant digits in cost so the \$/MMBTU calculations are accurate
All of the following examples are 4 significant digits: \$12.34, \$1.234, \$0.1234
Multiply \$ / kW / Month (from bill) x 12 to get to \$ / kW / Year
Guidance: Input 75% or less of Load Differential as kW savings calculation.
If higher, you need to justify why you will save more.
e.g. Current Lighting Peak Wattage: 120 kW, New Lighting 60 kW
Reasonable Demand Charge Savings Estimate (60 x 0.75 = 45 kW)